Prove the identity:
secθ + cosecθ x cotθ = secθ x (cosecθ)^2

Prove the identity:
secθ + cosecθ x cotθ = secθ x (cosecθ)^2

About the author
Piper

2 thoughts on “Prove the identity:<br /> secθ + cosecθ x cotθ = secθ x (cosecθ)^2”

  1. Answer:

    [tex]\huge\colorbox{orange}{ANSWER}[/tex]

    Now,

    (cosecθ−sinθ)(secθ−cosθ)

    =(sinθ1−sinθ)(cosθ1−cosθ)

    =(sinθ1−sin2θ)(cosθ1−cos2θ)

    =sinθcosθcos2θsin2θ=sinθcosθ (1)

    Next, consider tanθ+cotθ1

    =cosθsinθ+sinθcosθ1

    =(sinθcosθsin2θ+cos2θ)1

    =sinθcosθ (2)

    From (1) and (2), we get

    (cosecθ−sinθ)(secθ−cosθ)=tanθ+cotθ

    Reply
  2. Here I am using A instead of theta.

    We know the trigonometric

    identities ,

    1 ) sin² A + cos² A = 1

    2 ) sec² A = 1 + tan² A

    3 ) cosec² A = 1 + cot² A

    And

    4 ) sinA cosecA = 1

    5 ) cosA secA = 1

    Now ,

    LHS = (sinA+cosecA)² + (cosA+secA)²

    = sin²A+cosec² A+2sinAcosecA+

    cos² A + sec² A + 2cosAsecA

    = (Sin²A + cos² A ) + 2 + 2 + cosec² A

    + Sec² A

    = 1 + 2 + 2 + ( 1 + cot² A )+( 1 + tan²A )

    = 7 + cot² A + tan² A

    = RHS

    I hope this helps you.

    Reply

Leave a Reply to Mary Cancel reply