[tex]\mathfrak\blue{Answer \ :-}[/tex] In trigonometrical ratios of angles (180° + θ) we will find the relation between all six trigonometrical ratios. We know that, sin (90° + θ) = cos θ cos (90° + θ) = – sin θ tan (90° + θ) = – cot θ csc (90° + θ) = sec θ sec ( 90° + θ) = – csc θ cot ( 90° + θ) = – tan θ _________________________ [tex]\large{\boxed{\boxed{\rm{Proving \ them : – }}}}[/tex] Using the above proved results we will prove all six trigonometrical ratios of (180° + θ). sin (180° + θ) = sin (90° + 90° + θ) = sin [90° + (90° + θ)] = cos (90° + θ), [since sin (90° + θ) = cos θ] Therefore, sin (180° + θ) = – sin θ, [since cos (90° + θ) = – sin θ] cos (180° + θ) = cos (90° + 90° + θ) = cos [90° + (90° + θ)] = – sin (90° + θ), [since cos (90° + θ) = -sin θ] Therefore, cos (180° + θ) = – cos θ, [since sin (90° + θ) = cos θ] tan (180° + θ) = cos (90° + 90° + θ) = tan [90° + (90° + θ)] = – cot (90° + θ), [since tan (90° + θ) = -cot θ] Therefore, tan (180° + θ) = tan θ, [since cot (90° + θ) = -tan θ] csc (180° + θ) = 1sin(180°+Θ) = 1−sinΘ, [since sin (180° + θ) = -sin θ] Therefore, csc (180° + θ) = – csc θ; sec (180° + θ) = 1cos(180°+Θ) = 1−cosΘ, [since cos (180° + θ) = – cos θ] Therefore, sec (180° + θ) = – sec θ and cot (180° + θ) = 1tan(180°+Θ) = 1tanΘ, [since tan (180° + θ) = tan θ] Therefore, cot (180° + θ) = cot θ Reply
[tex]\mathfrak\blue{Answer \ :-}[/tex]
We know that,
sin (90° + θ) = cos θ
cos (90° + θ) = – sin θ
tan (90° + θ) = – cot θ
csc (90° + θ) = sec θ
sec ( 90° + θ) = – csc θ
cot ( 90° + θ) = – tan θ
_________________________
[tex]\large{\boxed{\boxed{\rm{Proving \ them : – }}}}[/tex]
sin (180° + θ) = sin (90° + 90° + θ)
= sin [90° + (90° + θ)]
= cos (90° + θ), [since sin (90° + θ) = cos θ]
Therefore, sin (180° + θ) = – sin θ, [since cos (90° + θ) = – sin θ]
cos (180° + θ) = cos (90° + 90° + θ)
= cos [90° + (90° + θ)]
= – sin (90° + θ), [since cos (90° + θ) = -sin θ]
Therefore, cos (180° + θ) = – cos θ, [since sin (90° + θ) = cos θ]
tan (180° + θ) = cos (90° + 90° + θ)
= tan [90° + (90° + θ)]
= – cot (90° + θ), [since tan (90° + θ) = -cot θ]
Therefore, tan (180° + θ) = tan θ, [since cot (90° + θ) = -tan θ]
csc (180° + θ) = 1sin(180°+Θ)
= 1−sinΘ, [since sin (180° + θ) = -sin θ]
Therefore, csc (180° + θ) = – csc θ;
sec (180° + θ) = 1cos(180°+Θ)
= 1−cosΘ, [since cos (180° + θ) = – cos θ]
Therefore, sec (180° + θ) = – sec θ
and
cot (180° + θ) = 1tan(180°+Θ)
= 1tanΘ, [since tan (180° + θ) = tan θ]
Therefore, cot (180° + θ) = cot θ