prove the All sin, cos, Tan, cosec, sec, cot teta degrees up to 180​

prove the All sin, cos, Tan, cosec, sec, cot teta degrees up to 180​

About the author
Athena

1 thought on “prove the All sin, cos, Tan, cosec, sec, cot teta degrees up to 180​”

  1. [tex]\mathfrak\blue{Answer \ :-}[/tex]

    • In trigonometrical ratios of angles (180° + θ) we will find the relation between all six trigonometrical ratios.

    We know that,

    sin (90° + θ) = cos θ

    cos (90° + θ) = – sin θ

    tan (90° + θ) = – cot θ

    csc (90° + θ) = sec θ

    sec ( 90° + θ) = – csc θ

    cot ( 90° + θ) = – tan θ

    _________________________

    [tex]\large{\boxed{\boxed{\rm{Proving \ them : – }}}}[/tex]

    • Using the above proved results we will prove all six trigonometrical ratios of (180° + θ).

    sin (180° + θ) = sin (90° + 90° + θ)

    = sin [90° + (90° + θ)]

    = cos (90° + θ), [since sin (90° + θ) = cos θ]

    Therefore, sin (180° + θ) = – sin θ, [since cos (90° + θ) = – sin θ]

    cos (180° + θ) = cos (90° + 90° + θ)

    = cos [90° + (90° + θ)]

    = – sin (90° + θ), [since cos (90° + θ) = -sin θ]

    Therefore, cos (180° + θ) = – cos θ, [since sin (90° + θ) = cos θ]

    tan (180° + θ) = cos (90° + 90° + θ)

    = tan [90° + (90° + θ)]

    = – cot (90° + θ), [since tan (90° + θ) = -cot θ]

    Therefore, tan (180° + θ) = tan θ, [since cot (90° + θ) = -tan θ]

    csc (180° + θ) = 1sin(180°+Θ)

    = 1−sinΘ, [since sin (180° + θ) = -sin θ]

    Therefore, csc (180° + θ) = – csc θ;

    sec (180° + θ) = 1cos(180°+Θ)

    = 1−cosΘ, [since cos (180° + θ) = – cos θ]

    Therefore, sec (180° + θ) = – sec θ

    and

    cot (180° + θ) = 1tan(180°+Θ)

    = 1tanΘ, [since tan (180° + θ) = tan θ]

    Therefore, cot (180° + θ) = cot θ

    Reply

Leave a Comment