Problem 2: A constant force is applied to a body of mass 100 g initially atrest. If the body acquires a velocity of 10 m/s in 5 seconds, determine the force. About the author Emery
Solution: Given that: A constant force is applied to a body of mass 100 g initially at rest. The body acquires a velocity of 10 m/s in 5 seconds. Abbreviations: u = Initial velocity v = Final velocity t = Time taken to acquire velocity a = Acceleration m = Mass F = Force We have: u = 0 m/s v = 10 m/s t = 5 seconds We know that: → a = (v – u)/t → a = (10 – 0)/5 → a = 10/5 → a = 2 ⁂ Acceleration = 2 m/s² Now we have: m = 100 g = 100/1000 = 0.1 kg a = 2 m/s² We know that: → F = ma → F = 0.1 × 2 → F = 0.2 ⁂ Force = 0.2 N Reply
Answer: Given :- A constant force is applied to a body of mass 100 g initially at rest. The body acquires a velocity of 10 m/s in 5 seconds. To Find :- What is the force. Formula Used :- [tex]\clubsuit[/tex] Acceleration Formula : [tex]\longmapsto \sf\boxed{\bold{\pink{Acceleration =\: \dfrac{Final\: Velocity\: -\: Initial\: Velocity}{Time}}}}\\[/tex] [tex]\clubsuit[/tex] Force Formula : [tex]\longmapsto \sf\boxed{\bold{\pink{Force =\: Mass \times Acceleration}}}\\[/tex] Solution :- First, we have to find the acceleration : Given : Final Velocity (v) = 10 m/s Initial Velocity (u) = 0 m/s Time = 5 seconds According to the question by using the formula we get, [tex]\implies \sf Acceleration =\: \dfrac{10 – 0}{5}[/tex] [tex]\implies \sf Acceleration =\: \dfrac{\cancel{10}}{\cancel{5}}[/tex] [tex]\implies \sf Acceleration =\: \dfrac{2}{1}[/tex] [tex]\implies \sf\bold{\green{Acceleration =\: 2\: m/s^2}}[/tex] Hence, the acceleration is 2 m/s². Now, we have to find force : At first we have to convert the mass into kg : [tex]\implies \sf Mass =\: 100\: g[/tex] [tex]\implies \sf Mass =\: \dfrac{100}{1000}\: kg\: \bigg\lgroup \sf\bold{\purple{1\: g =\: \dfrac{1}{1000}}}\bigg \rgroup\\[/tex] [tex]\implies \sf\bold{\green{Mass =\: 0.1\: kg}}[/tex] Given : Mass = 0.1 kg Acceleration = 2 m/s² According to the question by using the formula we get, [tex]\dashrightarrow \sf Force =\: 0.1 \times 2[/tex] [tex]\dashrightarrow \sf Force =\: \dfrac{1}{10} \times 2[/tex] [tex]\dashrightarrow \sf Force =\: \dfrac{2}{10}[/tex] [tex]\dashrightarrow \sf\bold{\red{Force =\: 0.2\: N}}[/tex] [tex]\therefore[/tex] The force is 0.2 N . Reply
Solution:
Given that:
Abbreviations:
We have:
We know that:
→ a = (v – u)/t
→ a = (10 – 0)/5
→ a = 10/5
→ a = 2
⁂ Acceleration = 2 m/s²
Now we have:
We know that:
→ F = ma
→ F = 0.1 × 2
→ F = 0.2
⁂ Force = 0.2 N
Answer:
Given :-
To Find :-
Formula Used :-
[tex]\clubsuit[/tex] Acceleration Formula :
[tex]\longmapsto \sf\boxed{\bold{\pink{Acceleration =\: \dfrac{Final\: Velocity\: -\: Initial\: Velocity}{Time}}}}\\[/tex]
[tex]\clubsuit[/tex] Force Formula :
[tex]\longmapsto \sf\boxed{\bold{\pink{Force =\: Mass \times Acceleration}}}\\[/tex]
Solution :-
First, we have to find the acceleration :
Given :
According to the question by using the formula we get,
[tex]\implies \sf Acceleration =\: \dfrac{10 – 0}{5}[/tex]
[tex]\implies \sf Acceleration =\: \dfrac{\cancel{10}}{\cancel{5}}[/tex]
[tex]\implies \sf Acceleration =\: \dfrac{2}{1}[/tex]
[tex]\implies \sf\bold{\green{Acceleration =\: 2\: m/s^2}}[/tex]
Hence, the acceleration is 2 m/s².
Now, we have to find force :
At first we have to convert the mass into kg :
[tex]\implies \sf Mass =\: 100\: g[/tex]
[tex]\implies \sf Mass =\: \dfrac{100}{1000}\: kg\: \bigg\lgroup \sf\bold{\purple{1\: g =\: \dfrac{1}{1000}}}\bigg \rgroup\\[/tex]
[tex]\implies \sf\bold{\green{Mass =\: 0.1\: kg}}[/tex]
Given :
According to the question by using the formula we get,
[tex]\dashrightarrow \sf Force =\: 0.1 \times 2[/tex]
[tex]\dashrightarrow \sf Force =\: \dfrac{1}{10} \times 2[/tex]
[tex]\dashrightarrow \sf Force =\: \dfrac{2}{10}[/tex]
[tex]\dashrightarrow \sf\bold{\red{Force =\: 0.2\: N}}[/tex]
[tex]\therefore[/tex] The force is 0.2 N .