PQ is a straight line of 13 units if P has coordinates (5,-3) and Q has coordinates (-7,y) find the value of y About the author Claire
Answer: by distance formula y-3/-7+5=3 y-3=13(-2) y=3-26 y=-23 mark my answer as brainlist please. Reply
Given : •PQ is a straight line •Distance between PQ=13units •Coordinates of P=(5,-3) • Coordinates of Q=(-7, y) To Find : • The value of y=? Formula : Distance formula : [tex]\boxed{\bf{ \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}}[/tex] Solution : Given Points : •P=(5,-3) •Q=(-7,y) By using distance formula : [tex]\implies\sf{\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}[/tex] [tex] \\ \implies \sf \: \sqrt{ {(y – ( – 3)}^{2} + {( – 7 – 5)}^{2} } [/tex] [tex] \\ \implies \sf \: \sqrt{ {(y + 3)}^{2} + 144} = distance = 13[/tex] [tex] \\ \implies \sf \: {(y + 3)}^{2} = 169 – 144[/tex] [tex] \\ \implies \sf \: {y}^{2} + 9 + 6y = 25[/tex] [tex] \\ \implies \sf \: {y}^{2} + 6y = 25 – 9[/tex] [tex] \\ \implies \sf \: {y}^{2} + 6y – 16 = 0[/tex] [tex] \\ \implies \sf \: {y}^{2} + 8y – 2y – 16 = 0[/tex] [tex] \\ \implies \sf \: y(y + 8) – 2(y + 8) = 0[/tex] [tex] \\ \implies \sf \boxed{ \bf{y = – 8} \ } \: and \: \boxed{ \bf{y = 2}}[/tex] Therefore, The value of y is 2 . Reply
Answer:
by distance formula
y-3/-7+5=3
y-3=13(-2)
y=3-26
y=-23
mark my answer as brainlist please.
Given :
•PQ is a straight line
•Distance between PQ=13units
•Coordinates of P=(5,-3)
• Coordinates of Q=(-7, y)
To Find :
• The value of y=?
Formula :
Distance formula :
[tex]\boxed{\bf{ \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}}[/tex]
Solution :
Given Points :
•P=(5,-3)
•Q=(-7,y)
By using distance formula :
[tex]\implies\sf{\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}[/tex]
[tex] \\ \implies \sf \: \sqrt{ {(y – ( – 3)}^{2} + {( – 7 – 5)}^{2} } [/tex]
[tex] \\ \implies \sf \: \sqrt{ {(y + 3)}^{2} + 144} = distance = 13[/tex]
[tex] \\ \implies \sf \: {(y + 3)}^{2} = 169 – 144[/tex]
[tex] \\ \implies \sf \: {y}^{2} + 9 + 6y = 25[/tex]
[tex] \\ \implies \sf \: {y}^{2} + 6y = 25 – 9[/tex]
[tex] \\ \implies \sf \: {y}^{2} + 6y – 16 = 0[/tex]
[tex] \\ \implies \sf \: {y}^{2} + 8y – 2y – 16 = 0[/tex]
[tex] \\ \implies \sf \: y(y + 8) – 2(y + 8) = 0[/tex]
[tex] \\ \implies \sf \boxed{ \bf{y = – 8} \ } \: and \: \boxed{ \bf{y = 2}}[/tex]
Therefore, The value of y is 2 .