Perimeter of a rectangle is 24 meters. If length of a rectangle is 2 meters more than its breadth, then find the breadth of a rectangle.

### 2 thoughts on “Perimeter of a rectangle is 24 meters. If length of a rectangle is 2 meters more than its breadth, then find the breadth of a rect”

### Leave a Comment

You must be logged in to post a comment.

Diagram:[tex]\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large x+2\: m}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large x m}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}[/tex]

❍ Let’s Consider the Breadth of Rectangle bem

xThen,Giventhat,2 metersmore than itsbreadth.Therefore,

Lengthx+2[tex]\dag\frak{\underline {Perimeter \:of\:Rectangle \::}}\\[/tex]

[tex]\star\boxed {\sf{\pink{ Perimeter_{(Rectangle)} = 2 ( l + b) \:units }}}\\\\[/tex]

Where ,

lis the Length of Rectangle andbis the Breadth of Rectangle.⠀⠀⠀⠀⠀⠀[tex]\underline {\bf{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\[/tex]

[tex] :\implies \sf { 24 = 2(x + x + 2) }\\\\ :\implies \sf { \cancel {\dfrac{24}{2}} = x + x + 2 }\\\\ :\implies \sf { 12 = x + x + 2 }\\\\ :\implies \sf { 12 = 2x + 2 }\\\\ :\implies \sf { 12-2 = 2x }\\\\ :\implies \sf { 10 = 2x }\\\\ :\implies \sf { \cancel {\dfrac{10}{2}} = x }\\\\\underline {\boxed{\pink{ \mathrm { x = 5\: m}}}}\:\bf{\bigstar}\\[/tex]

Therefore,

7m5mTherefore,

⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm { Hence,\: Breadth \:of\:Rectangle \:is\:\bf{5\: m}}}}\\[/tex]

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answer:5 m is the perfect answer please make me as brain list