Perimeter of a rectangle is 24 meters. If length of a rectangle is 2 meters more than its breadth, then find the breadth of a rectangle. About the author Adalyn
Diagram : [tex]\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large x+2\: m}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large x m}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}[/tex] ❍ Let’s Consider the Breadth of Rectangle be x m Then , Given that , Length of a rectangle is 2 meters more than its breadth. Therefore, Length of Rectangle is x + 2 m [tex]\dag\frak{\underline {Perimeter \:of\:Rectangle \::}}\\[/tex] [tex]\star\boxed {\sf{\pink{ Perimeter_{(Rectangle)} = 2 ( l + b) \:units }}}\\\\[/tex] Where , l is the Length of Rectangle and b is the Breadth of Rectangle. ⠀⠀⠀⠀⠀⠀[tex]\underline {\bf{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\[/tex] [tex] :\implies \sf { 24 = 2(x + x + 2) }\\\\ :\implies \sf { \cancel {\dfrac{24}{2}} = x + x + 2 }\\\\ :\implies \sf { 12 = x + x + 2 }\\\\ :\implies \sf { 12 = 2x + 2 }\\\\ :\implies \sf { 12-2 = 2x }\\\\ :\implies \sf { 10 = 2x }\\\\ :\implies \sf { \cancel {\dfrac{10}{2}} = x }\\\\\underline {\boxed{\pink{ \mathrm { x = 5\: m}}}}\:\bf{\bigstar}\\[/tex] Therefore, Length of Rectangle is (x +2) = 5 + 2 = 7 m Breadth of Rectangle is x = 5 m Therefore, ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm { Hence,\: Breadth \:of\:Rectangle \:is\:\bf{5\: m}}}}\\[/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ Reply
Diagram :
[tex]\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large x+2\: m}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large x m}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}[/tex]
❍ Let’s Consider the Breadth of Rectangle be x m
Then ,
Given that ,
Therefore,
[tex]\dag\frak{\underline {Perimeter \:of\:Rectangle \::}}\\[/tex]
[tex]\star\boxed {\sf{\pink{ Perimeter_{(Rectangle)} = 2 ( l + b) \:units }}}\\\\[/tex]
Where ,
⠀⠀⠀⠀⠀⠀[tex]\underline {\bf{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\[/tex]
[tex] :\implies \sf { 24 = 2(x + x + 2) }\\\\ :\implies \sf { \cancel {\dfrac{24}{2}} = x + x + 2 }\\\\ :\implies \sf { 12 = x + x + 2 }\\\\ :\implies \sf { 12 = 2x + 2 }\\\\ :\implies \sf { 12-2 = 2x }\\\\ :\implies \sf { 10 = 2x }\\\\ :\implies \sf { \cancel {\dfrac{10}{2}} = x }\\\\\underline {\boxed{\pink{ \mathrm { x = 5\: m}}}}\:\bf{\bigstar}\\[/tex]
Therefore,
Therefore,
⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm { Hence,\: Breadth \:of\:Rectangle \:is\:\bf{5\: m}}}}\\[/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
Answer:
5 m is the perfect answer please make me as brain list