ORA bag contains 20 balls out of which some are white and others are red. If the2/5probability of drawing a red ball is how many white balls are there in the bag? About the author Alaia
[tex]\huge\bold{\textbf{\textsf{{\color{silver}{AnswEr}}}}}[/tex][tex]\huge\bold{\textbf{\textsf{{\color{pink}{:}}}}}[/tex] Let the points be A (-8, x) B (2, 0) Applying distance formula, AB = √[(x₂ – x₁)² + (y₂ – y₁)²] Here: x₁ = -8 x₂ = 2 y₁ = x y₂ = 0 Substitute these values in the above formula ⇒ AB = √[(2 – (-8))² + (0 – x)²] ⇒ AB = √[(2 + 8)² + (-x)²] ⇒ AB = √[(10)² + x²] ⇒ AB = √(100 + x²) ⇒ 5√5 = √(100 + x²) Squaring on both sides, (5√5)² = 100 + x² ⇒ 125 = 100 + x² ⇒ 125 – 100 = x² ⇒ x² = 25 ⇒ x = √25 ∴ x = ±5 Reply
[tex]\huge\bold{\textbf{\textsf{{\color{silver}{AnswEr}}}}}[/tex][tex]\huge\bold{\textbf{\textsf{{\color{pink}{:}}}}}[/tex]
Let the points be
A (-8, x)
B (2, 0)
Applying distance formula,
AB = √[(x₂ – x₁)² + (y₂ – y₁)²]
Here:
x₁ = -8
x₂ = 2
y₁ = x
y₂ = 0
Substitute these values in the above formula
⇒ AB = √[(2 – (-8))² + (0 – x)²]
⇒ AB = √[(2 + 8)² + (-x)²]
⇒ AB = √[(10)² + x²]
⇒ AB = √(100 + x²)
⇒ 5√5 = √(100 + x²)
Squaring on both sides,
(5√5)² = 100 + x²
⇒ 125 = 100 + x²
⇒ 125 – 100 = x²
⇒ x² = 25
⇒ x = √25
∴ x = ±5