Answer : Area of Rhombus is 117.5cm². Solution : Given : Length of the diagonals of a rhombus are 16.5 cm and 14.2 cm. To Find : Area of the Rhombus. [tex]\red\bigstar\:\boxed{\sf Area_{Rhombus} = \frac{1}{2} \times d_1 \times d_2 }[/tex] Let, d1 = 16.5 cm. d2 = 14.2 cm. Applying the formula here, [tex] \sf \leadsto Area_{Rhombus} = \frac{1}{2} \times 16.5 \times 14.2 [/tex] [tex] \sf \implies Area_{Rhombus} = \frac{1}{2} \times 234.5 [/tex] [tex] \sf \leadsto Area_{Rhombus} = \underline{\boxed{\pink {\sf 117.5cm^2}}}[/tex] Hence, Area of Rhombus is 117.5cm². ━━━━━━━━━━━ More to know : [tex]\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}[/tex] ━━━━━━━━━━━ [tex]{\fcolorbox{red}{blue}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: SugarCrash\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}} [/tex] Reply
★ Given : Length of the diagonals of a rhombus are 16.5 cm and 14.2cm. ★ To find : Area of Rhombus ★ Solution : Area of Rhombus = 1/2 × D₁ × D₂ ➤ 1/2 × 16.5 × 14.2 ➤ 2/234.3 ➤ 117.15cm² Area of Rhombus is 117.15cm² More to Know : Area Of Rectangle = L × B Area of Square = (Side)² Area of Rhombus = 1/2 × D₁ × D₂ Area of Parralegram = Base × Height ___________________ Reply
Answer :
Area of Rhombus is 117.5cm².
Solution :
Given :
To Find :
[tex]\red\bigstar\:\boxed{\sf Area_{Rhombus} = \frac{1}{2} \times d_1 \times d_2 }[/tex]
Let,
Applying the formula here,
[tex] \sf \leadsto Area_{Rhombus} = \frac{1}{2} \times 16.5 \times 14.2 [/tex]
[tex] \sf \implies Area_{Rhombus} = \frac{1}{2} \times 234.5 [/tex]
[tex] \sf \leadsto Area_{Rhombus} = \underline{\boxed{\pink {\sf 117.5cm^2}}}[/tex]
Hence,
Area of Rhombus is 117.5cm².
━━━━━━━━━━━
More to know :
[tex]\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}[/tex]
━━━━━━━━━━━
[tex]{\fcolorbox{red}{blue}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: SugarCrash\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}} [/tex]
★ Given :
★ To find :
★ Solution :
Area of Rhombus = 1/2 × D₁ × D₂
➤ 1/2 × 16.5 × 14.2
➤ 2/234.3
➤ 117.15cm²
Area of Rhombus is 117.15cm²
More to Know :
___________________