# IV.The product of two integers is -160. If one of them is 20, find the other​

IV.
The product of two integers is -160. If one of them is 20, find the other​

### 2 thoughts on “IV.<br />The product of two integers is -160. If one of them is 20, find the other​”

1. ❍ Let’s Consider the Second no. be x .

Given that ,

• The product of two integers is -160. If one of them is 20 .

Then ,

$$\qquad \qquad \underline {\sf { \implies Equation = x \times 20 = -160 }}\\\\$$

⠀⠀⠀⠀⠀⠀$$\underline {\frak{\star\:Now \: By \: Solving \: the \: \: Value\:of\:x \::}}\\$$

$$:\implies \sf { x \times 20 = – 160 }\\\\\\:\implies \sf{ x = \cancel {\dfrac{-160}{20}}}\\\\\\\underline {\boxed{\pink{ \mathrm { x = -8\: }}}}\:\bf{\bigstar}\\$$

Therefore,

⠀⠀⠀⠀⠀$$\therefore {\underline{ \mathrm { Hence,\:The \:Second \:number\:is\:\bf{-8\: }}}}\\$$

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

V E R I F I C A T I O N :

As, We know that ,

$$\qquad \qquad \underline {\sf { \implies Equation = x \times 20 = -160 }}\\\\$$

Where,

• x = -8 .

⠀⠀⠀⠀⠀⠀$$\underline {\frak{\star\:Now \: By \: Substituting \: the \: Found \: Values \::}}\\$$

$$:\implies \sf { x \times 20 = – 160 }\\\\\\:\implies \sf{ -8 \times 20 = -160}\\\\\\\underline {\boxed{\pink{ \mathrm { -160 = -160\: }}}}\:\bf{\bigstar}\\$$

⠀⠀⠀⠀⠀$$\therefore {\underline {\bf{ Hence, \:Verified \:}}}\\$$

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

x = -8

Step-by-step explanation:

Let the other number be ‘x’

product of x and 20 is -160

(x) × 20 = -160

x = -160/20

x = -8

Hope this helps you