. In what ratio does the point (-4 ,6) divide the line segment joining the points (-6, 10) and (3, 6). About the author Rylee
[tex]\huge{\underline{\textsf{\textbf{\red{Question…}}}}}[/tex] In what ratio does the point [tex]\sf (-4,6)[/tex] divide the line segment joining the points [tex]\sf (-6,10)[/tex] and [tex]\sf (3,6)[/tex]? [tex] \\ [/tex] [tex]\huge{\underline{\textsf{\textbf{\red{Solution…}}}}}[/tex] Here, we are given three points as follows : [tex]\green{\textsf{\textbf{A:(-6,10)}}}[/tex] [tex]\green{\textsf{\textbf{B:(3,6)}}}[/tex] [tex]\green{\textsf{\textbf{C:(-4,6)}}}[/tex] Now, we shall find in what ratio the point C divides the line joining the points A and C. We should find the ratio between AC and CB : Let the required ratio be : [tex]\green{\sf{k:1}}[/tex]. So, now : [tex]\sf m_1: k[/tex] [tex]\sf m_2: 1[/tex] [tex]\sf x_1: -6[/tex] [tex]\sf x_2: 3[/tex] [tex]\sf y_1:10[/tex] [tex]\sf y_2:6[/tex] [tex] \sf x:-4[/tex] [tex]\sf y:6[/tex] Using the section formula : [tex]\green{:\implies{\pmb{\sf{x = \dfrac{ m_{1} x_{2} + m_{2} x_{1}}{ m_{1} + m_{2}}}}}}[/tex] [tex] \sf: \implies – 4 = \dfrac{k(3) + 1( – 6)}{k + 1} [/tex] [tex] \sf: \implies – 4 = \dfrac{3k – 6}{k + 1} [/tex] [tex] \sf: \implies – 4(k + 1) = 3k – 6[/tex] [tex] \sf: \implies – 4k – 3k = – 6 + 4[/tex] [tex] \sf: \implies – 7k = -2[/tex] [tex]\green{:\implies{\pmb{\sf{k = \dfrac{2}{7}}}}}[/tex] Now, substituting the value of k in k : 1 : [tex]\sf : \implies \dfrac{2}{7} : 1[/tex] We’ll multiply the ratio with 7 to get the non-fractional values : [tex] \sf: \implies7 (\dfrac{2}{7}) : 1(7)[/tex] [tex]\green{:\implies{\pmb{\sf{2 : 7}}}}[/tex] [tex] \\ [/tex] ___________________ Therefore, the point (–4,6) divides the line segment joining the points (–6,10) and (3,6) in the ratio of 2 : 7. Reply
[tex]\huge{\underline{\textsf{\textbf{\red{Question…}}}}}[/tex]
In what ratio does the point [tex]\sf (-4,6)[/tex] divide the line segment joining the points [tex]\sf (-6,10)[/tex] and [tex]\sf (3,6)[/tex]?
[tex] \\ [/tex]
[tex]\huge{\underline{\textsf{\textbf{\red{Solution…}}}}}[/tex]
Here, we are given three points as follows :
Now, we shall find in what ratio the point C divides the line joining the points A and C.
We should find the ratio between AC and CB :
Let the required ratio be : [tex]\green{\sf{k:1}}[/tex].
So, now :
Using the section formula :
[tex]\green{:\implies{\pmb{\sf{x = \dfrac{ m_{1} x_{2} + m_{2} x_{1}}{ m_{1} + m_{2}}}}}}[/tex]
[tex] \sf: \implies – 4 = \dfrac{k(3) + 1( – 6)}{k + 1} [/tex]
[tex] \sf: \implies – 4 = \dfrac{3k – 6}{k + 1} [/tex]
[tex] \sf: \implies – 4(k + 1) = 3k – 6[/tex]
[tex] \sf: \implies – 4k – 3k = – 6 + 4[/tex]
[tex] \sf: \implies – 7k = -2[/tex]
[tex]\green{:\implies{\pmb{\sf{k = \dfrac{2}{7}}}}}[/tex]
Now, substituting the value of k in k : 1 :
[tex]\sf : \implies \dfrac{2}{7} : 1[/tex]
We’ll multiply the ratio with 7 to get the non-fractional values :
[tex] \sf: \implies7 (\dfrac{2}{7}) : 1(7)[/tex]
[tex]\green{:\implies{\pmb{\sf{2 : 7}}}}[/tex]
[tex] \\ [/tex]
___________________
Therefore, the point (–4,6) divides the line segment joining the points (–6,10) and (3,6) in the ratio of 2 : 7.