in the cylindrical container the radius of the base is 8 cm if the height of the water level is 20 cm find the volume of the water in the container. About the author Lydia
[tex]\huge{\underline{\mathtt{\red{A}\pink{N}\green{S}\blue{W}\purple{E}\orange{R}}}}[/tex] [tex]\sf{\underline{\overline{\pink{Given:}}}} [/tex] Radius = 8cm height = 20 Cm [tex]\sf{\underline{\overline{\orange{To \: Find :}}}} [/tex] The volume of the water in the container. [tex]\sf{\underline{\overline{\red{Solution :}}}} [/tex] Volume of cylinder = π × r² × h Substituting the values – ⇛ 3.14² x (8)² x 20 ⇛ 4021.76cm³ ⇛ 4.0218 L [tex]\sf{\underline{\overline{\green{Therefore,}}}} [/tex] The volume of the water in the container is 4.0218 L . Reply
Step-by-step explanation: The answer is (b) 4.02181 because the volume of a cylinder is 2πrh Given, height=20 cm radius=8 cm volume of cylinder=2×22/7×8×20 =4.02181 Reply
[tex]\huge{\underline{\mathtt{\red{A}\pink{N}\green{S}\blue{W}\purple{E}\orange{R}}}}[/tex]
[tex]\sf{\underline{\overline{\pink{Given:}}}} [/tex]
Radius = 8cm
height = 20 Cm
[tex]\sf{\underline{\overline{\orange{To \: Find :}}}} [/tex]
The volume of the water in the container.
[tex]\sf{\underline{\overline{\red{Solution :}}}} [/tex]
Volume of cylinder = π × r² × h
Substituting the values –
⇛ 3.14² x (8)² x 20
⇛ 4021.76cm³
⇛ 4.0218 L
[tex]\sf{\underline{\overline{\green{Therefore,}}}} [/tex]
The volume of the water in the container is 4.0218 L .
Step-by-step explanation:
The answer is (b) 4.02181 because the volume of a cylinder is 2πrh
Given,
height=20 cm
radius=8 cm
volume of cylinder=2×22/7×8×20
=4.02181