In ∆ PQR , right-angled at Q, PR + QR = 25cm and PQ = 5cm. Determine the value of sin P, cos P and tan P.​

By Ayla

In ∆ PQR , right-angled at Q, PR + QR = 25cm and PQ = 5cm. Determine the value of sin P, cos P and tan P.​

About the author
Ayla

2 thoughts on “In ∆ PQR , right-angled at Q, PR + QR = 25cm and PQ = 5cm. Determine the value of sin P, cos P and tan P.​”

  1. [tex]✅❤️Answer❤️[/tex]

    ⇒PQ=5cm

    ⇒PR+QR=25cm

    ⇒PR=25−QR

    Now, In △PQR

    ⇒(PR)²

    =PQ²+QR²

    ⇒(25−QR)²

    =5²+QR²

    ⇒625+QR²−50QR=25+QR²

    ⇒50QR=600

    ⇒QR=12cm

    ⇒PR=25−12=13cm

    [tex]∴sinP= \frac{qr}{pr} = \frac{12}{13} ,cosP= \frac{pq}{pr} = \frac{5}{13} ,tanP= \frac{qr}{pq} = \frac{12}{5} \\ Hence, the answers are sinP= \\ \frac{12}{13} ,cosP= \: \frac{5}{13},tanP= \frac{12}{5} [/tex]

    Reply
  2. Step-by-step explanation:

    PQ=5cm

    ⇒PR+QR=25cm

    ⇒PR=25−QR

    Now, In △PQR

    ⇒(PR)

    2

    =PQ

    2

    +QR

    2

    ⇒(25−QR)

    2

    =5

    2

    +QR

    2

    ⇒625+QR

    2

    −50QR=25+QR

    2

    ⇒50QR=600

    ⇒QR=12cm

    ⇒PR=25−12=13cm

    ∴sinP=

    PR

    QR

    =

    13

    12

    ,cosP=

    PR

    PQ

    =

    13

    5

    ,tanP=

    PQ

    QR

    =

    5

    12

    Hence, the answers are sinP=

    13

    12

    ,cosP=

    13

    5

    ,tanP=

    5

    12

    Reply

Leave a Reply to Brielle Cancel reply