In fig. triangle ABC, AD is perpendicular to BC, Angle B = 60, Angle C = 30, AD = 2root3, find BC About the author Genesis
Step-by-step explanation: In triangle ABC , A=30° , let b=2k then c=√3k. cosA= (b^2+c^2-a^2)/2.b.c. cos 30° = (4k^2+3k^2-a^2)/(2.2k.√3.k) √3/2 = (7k^2-a^2)/4√3.k^2. or , √3/1= (7k^2-a^2)/(2√3k^2) or , 6k^2 = 7k^2 -a^2. or , a^2 = k^2. or , a= k………………………….(1) cosB = (c^2+a^2-b^2)/(2c.a) = (3k^2+k^2-4k^2)/(2.√3.k.k) cos B = 0 => B =90°. Reply
Step-by-step explanation: -Oct-2019 · 1 answer In ABC, if AD is perpendicular to BC and BD=10cm, angleB=60° and angle C =30°, then find CD.. Get the answers you … Imagewww.quora.com › In-a-triangle-AB… In a triangle ABC, AD is perpendicular on BC, BC=12 cm … 20-Jun-2019 · 15 answers Since ad is a perpendicular bisector the angle 90 deg at BAC gets splitted in the ratio 1:2. Since the angles in them are 30 deg and 60 deg Reply
Step-by-step explanation:
In triangle ABC , A=30° , let b=2k then c=√3k.
cosA= (b^2+c^2-a^2)/2.b.c.
cos 30° = (4k^2+3k^2-a^2)/(2.2k.√3.k)
√3/2 = (7k^2-a^2)/4√3.k^2.
or , √3/1= (7k^2-a^2)/(2√3k^2)
or , 6k^2 = 7k^2 -a^2.
or , a^2 = k^2.
or , a= k………………………….(1)
cosB = (c^2+a^2-b^2)/(2c.a) = (3k^2+k^2-4k^2)/(2.√3.k.k)
cos B = 0 => B =90°.
Step-by-step explanation:
-Oct-2019 · 1 answer
In ABC, if AD is perpendicular to BC and BD=10cm, angleB=60° and angle C =30°, then find CD.. Get the answers you …
Imagewww.quora.com › In-a-triangle-AB…
In a triangle ABC, AD is perpendicular on BC, BC=12 cm …
20-Jun-2019 · 15 answers
Since ad is a perpendicular bisector the angle 90 deg at BAC gets splitted in the ratio 1:2. Since the angles in them are 30 deg and 60 deg