In fig. triangle ABC, AD is perpendicular to BC, Angle B = 60, Angle C = 30, AD = 2root3, find BC

In fig. triangle ABC, AD is perpendicular to BC, Angle B = 60, Angle C = 30, AD = 2root3, find BC

About the author
Genesis

2 thoughts on “In fig. triangle ABC, AD is perpendicular to BC, Angle B = 60, Angle C = 30, AD = 2root3, find BC<br />​”

  1. Step-by-step explanation:

    In triangle ABC , A=30° , let b=2k then c=√3k.

    cosA= (b^2+c^2-a^2)/2.b.c.

    cos 30° = (4k^2+3k^2-a^2)/(2.2k.√3.k)

    √3/2 = (7k^2-a^2)/4√3.k^2.

    or , √3/1= (7k^2-a^2)/(2√3k^2)

    or , 6k^2 = 7k^2 -a^2.

    or , a^2 = k^2.

    or , a= k………………………….(1)

    cosB = (c^2+a^2-b^2)/(2c.a) = (3k^2+k^2-4k^2)/(2.√3.k.k)

    cos B = 0 => B =90°.

    Reply
  2. Step-by-step explanation:

    -Oct-2019 · 1 answer

    In ABC, if AD is perpendicular to BC and BD=10cm, angleB=60° and angle C =30°, then find CD.. Get the answers you …

    Imagewww.quora.com › In-a-triangle-AB…

    In a triangle ABC, AD is perpendicular on BC, BC=12 cm …

    20-Jun-2019 · 15 answers

    Since ad is a perpendicular bisector the angle 90 deg at BAC gets splitted in the ratio 1:2. Since the angles in them are 30 deg and 60 deg

    Reply

Leave a Comment