In an arithemetic sequence 20th term is 40 and common difference 5 find 5th and first term About the author Clara
Answer: (a) x 5 =40,x 10 =20 x 10 −x 5 =5d 5d=20−40=−20 ⇒d=−4 Now, x 15 =x 10 +5d=20−20=0 (b) First term, f=x 5 −4d=40−4(−4)=56 S n = 2 n[2f+(n−1)d] ⇒0= 2 n[2×56+(n−1)(−4)] ⇒n(112−4n+4)=0 ⇒n(116−4n)=0 ⇒=0,n=29 Thus, 29 terms of this sequence make the sum zero. Reply
Answer:
(a) x
5
=40,x
10
=20
x
10
−x
5
=5d
5d=20−40=−20
⇒d=−4
Now, x
15
=x
10
+5d=20−20=0
(b) First term, f=x
5
−4d=40−4(−4)=56
S
n
=
2
n[2f+(n−1)d]
⇒0=
2
n[2×56+(n−1)(−4)]
⇒n(112−4n+4)=0
⇒n(116−4n)=0
⇒=0,n=29
Thus, 29 terms of this sequence make the sum zero.