if the sum of fist 6 terms of ap is 96 and sum of first 10 term is 240 ,then find the sum of 20 term of ap About the author Peyton
[tex]\large\underline{\sf{Solution-}}[/tex] Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ, ↝ Sum of n terms of an arithmetic sequence is, [tex]\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}[/tex] Wʜᴇʀᴇ, Sₙ is the sum of n terms of AP. a is the first term of the sequence. n is the no. of terms. d is the common difference. Tʜᴜs, According to statement, Given that ☆ Sum of first 6 terms of an AP is 96. [tex]\rm :\longmapsto\:S_6 = 96[/tex] [tex]\rm :\longmapsto\:\dfrac{6}{2} \bigg(2 \:a\:+\:(6\:-\:1)\:d \bigg) = 96[/tex] [tex]\rm :\longmapsto\:2a + 5d = 32 – – – (1)[/tex] Also, Given that ☆ Sum of 10 terms is 240 [tex]\rm :\longmapsto\:S_{10} = 240[/tex] [tex]\rm :\longmapsto\:\dfrac{10}{2} \bigg(2 \:a\:+\:(10\:-\:1)\:d \bigg) = 240[/tex] [tex]\rm :\longmapsto\:2a + 9d = 48 – – – (2)[/tex] ○ On Subtracting equation (1) from equation (2), we get [tex]\rm :\longmapsto\:4d = 16[/tex] [tex]\bf\implies \:d = 4[/tex] ○ On Substituting d = 4, in equation (1), we get [tex]\rm :\longmapsto\:2a + 5 \times 4 = 32[/tex] [tex]\rm :\longmapsto\:2a + 20 = 32[/tex] [tex]\rm :\longmapsto\:2a = 32 – 20[/tex] [tex]\rm :\longmapsto\:2a = 12[/tex] [tex]\bf\implies \:a = 6[/tex] So, Now we have , First term of AP, a = 6 Common difference of AP, d = 4 Number of terms, n = 20 Sum of 20 terms, is [tex]\rm :\longmapsto\:S_{20}\:=\dfrac{20}{2} \bigg(2 \times 6\:+\:(20\:-\:1)\:4 \bigg)[/tex] [tex] \rm \: \: = \: \: 10(12 + 76)[/tex] [tex] \rm \: \: = \: \: 10(88)[/tex] [tex] \rm \: \: = \: \: 880[/tex] [tex]\bf\implies \:S_{20} = 880[/tex] Additional Information :- Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ, ↝ nᵗʰ term of an arithmetic sequence is, [tex]\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}[/tex] Wʜᴇʀᴇ, aₙ is the nᵗʰ term. a is the first term of the sequence. n is the no. of terms. d is the common difference. Reply
[tex]\large\underline{\sf{Solution-}}[/tex]
Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,
↝ Sum of n terms of an arithmetic sequence is,
[tex]\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}[/tex]
Wʜᴇʀᴇ,
Tʜᴜs,
According to statement,
Given that
☆ Sum of first 6 terms of an AP is 96.
[tex]\rm :\longmapsto\:S_6 = 96[/tex]
[tex]\rm :\longmapsto\:\dfrac{6}{2} \bigg(2 \:a\:+\:(6\:-\:1)\:d \bigg) = 96[/tex]
[tex]\rm :\longmapsto\:2a + 5d = 32 – – – (1)[/tex]
Also,
Given that
☆ Sum of 10 terms is 240
[tex]\rm :\longmapsto\:S_{10} = 240[/tex]
[tex]\rm :\longmapsto\:\dfrac{10}{2} \bigg(2 \:a\:+\:(10\:-\:1)\:d \bigg) = 240[/tex]
[tex]\rm :\longmapsto\:2a + 9d = 48 – – – (2)[/tex]
○ On Subtracting equation (1) from equation (2), we get
[tex]\rm :\longmapsto\:4d = 16[/tex]
[tex]\bf\implies \:d = 4[/tex]
○ On Substituting d = 4, in equation (1), we get
[tex]\rm :\longmapsto\:2a + 5 \times 4 = 32[/tex]
[tex]\rm :\longmapsto\:2a + 20 = 32[/tex]
[tex]\rm :\longmapsto\:2a = 32 – 20[/tex]
[tex]\rm :\longmapsto\:2a = 12[/tex]
[tex]\bf\implies \:a = 6[/tex]
So,
Now we have ,
Sum of 20 terms, is
[tex]\rm :\longmapsto\:S_{20}\:=\dfrac{20}{2} \bigg(2 \times 6\:+\:(20\:-\:1)\:4 \bigg)[/tex]
[tex] \rm \: \: = \: \: 10(12 + 76)[/tex]
[tex] \rm \: \: = \: \: 10(88)[/tex]
[tex] \rm \: \: = \: \: 880[/tex]
[tex]\bf\implies \:S_{20} = 880[/tex]
Additional Information :-
Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,
↝ nᵗʰ term of an arithmetic sequence is,
[tex]\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}[/tex]
Wʜᴇʀᴇ,