Here the concept of mid-formula is used. Here we are given with all the four vertices of a parallelogram. We know that the diagonals of a parallelogram bisect each other. According to this property, the mid-points of PR and QS will be equal. Now by equating we will get the values of a and b.
Explanation :
Since the diagonals bisect each other, the mid-points of PR and QS will be equal.
Answer:
If the points P(a, -11), Q(5, b), R(2, 15) and S(1, 1) are the vertices of a
parallelogram PQRS, find the values of a and b.
Given :
The vertices of a parallelogram PQRS,
To Find :
The values of a and b.
Solution :
Analysis :
Here the concept of mid-formula is used. Here we are given with all the four vertices of a parallelogram. We know that the diagonals of a parallelogram bisect each other. According to this property, the mid-points of PR and QS will be equal. Now by equating we will get the values of a and b.
Explanation :
Since the diagonals bisect each other, the mid-points of PR and QS will be equal.
Mid-Point of PR :
[tex]\boxed{\pmb{\sf\bigg\lgroup\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\bigg\rgroup}}[/tex]
where,
[tex]\implies\sf\bigg\lgroup\dfrac{a+2}{2},\dfrac{-11+15}{2}\bigg\rgroup[/tex]
[tex]\\ \implies\sf\bigg\lgroup\dfrac{a+2}{2},\dfrac{4}{2}\bigg\rgroup[/tex]
[tex]\\ \implies\sf\bigg\lgroup\dfrac{a+2}{2},\dfrac{\not{4}}{\not{2}}\bigg\rgroup[/tex]
[tex]\\ \implies\sf\bigg\lgroup\dfrac{a+2}{2},2\bigg\rgroup[/tex]
[tex]\therefore[/tex] Mid-Point of PR is [tex]\pmb{\sf\bigg\lgroup\dfrac{a+2}{2},2\bigg\rgroup}[/tex] (eq.(i))
Now,
Mid-Point of QS :
[tex]\boxed{\pmb{\sf\bigg\lgroup\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\bigg\rgroup}}[/tex]
where,
[tex]\implies\sf\bigg\lgroup\dfrac{5+1}{2},\dfrac{b+1}{2}\bigg\rgroup[/tex]
[tex]\\ \implies\sf\bigg\lgroup\dfrac{6}{2},\dfrac{b+1}{2}\bigg\rgroup[/tex]
[tex]\\ \implies\sf\bigg\lgroup\dfrac{\not{6}}{\not{2}},\dfrac{b+1}{2}\bigg\rgroup[/tex]
[tex]\\ \implies\sf\bigg\lgroup3,\dfrac{b+1}{2}\bigg\rgroup[/tex]
[tex]\therefore[/tex] Mid-Point of QS is [tex]\pmb{\sf\bigg\lgroup 3,\dfrac{b+1}{2}\bigg\rgroup}[/tex] (eq.(ii))
From eq.(i) and eq.(ii),
[tex]\implies\sf\dfrac{a+2}{2}=3[/tex]
[tex]\implies\sf a+2=3\times2[/tex]
[tex]\implies\sf a+2=6[/tex]
[tex]\implies\sf a=6-2[/tex]
[tex]\therefore\boxed{\pmb{\sf a=4.}}[/tex]
Again,
From eq.(i) and eq.(ii),
[tex]\implies\sf\dfrac{b+1}{2}=2[/tex]
[tex]\implies\sf b+1=2\times2[/tex]
[tex]\implies\sf b+1=4[/tex]
[tex]\implies\sf b=4-1[/tex]
[tex]\therefore\boxed{\pmb{\sf b=3.}}[/tex]
[tex]\\ [/tex]
So, the values of a and b are,
[tex]\boxed{\begin{cases}&\bf{a=4} \\ &\bf{b=3}\end{cases}}[/tex]