if the length of the diagonal of a cube 4√3then let us calculate the total surface area of the cube​

if the length of the diagonal of a cube 4√3then let us calculate the total surface area of the cube​

About the author
Kennedy

1 thought on “if the length of the diagonal of a cube 4√3then let us calculate the total surface area of the cube​”

  1. Given:

    • Length of the diagonal of a cube = 4√3

    To Find:

    • Total Surface Area of the Cube

    Formula Used:

    • [tex]{\boxed{\bf{Pythagoras\:theorem:\: H^2=B^2+P^2}}}[/tex]
    • [tex]{\boxed{\bf{TSA\:of\:Cube=6a^2}}}[/tex]

    Solution:

    Firstly,

    [tex]\bf :\implies\: H^2=B^2+P^2[/tex]

    [tex]\bf :\implies\: (4\sqrt{3})^2=2B^2[/tex]

    [tex]\bf :\implies\: B^2=\dfrac{48}{2}[/tex]

    [tex]\bf :\implies\: B^2=24[/tex]

    [tex]\bf :\implies\: B=\sqrt{24}[/tex]

    Side of the Square = 24

    Now,

    [tex]\bf :\implies\:TSA\:of\:Cube=6a^2[/tex]

    [tex]\bf :\implies\:TSA\:of\:Cube=6\sqrt{24}^2[/tex]

    [tex]\bf :\implies\:TSA\:of\:Cube=6\times 24[/tex]

    [tex]\bf :\implies\:TSA\:of\:Cube=144[/tex]

    Hence, The Total Surface Area of the Cube is 144 square units.

    ━━━━━━━━━━━━━━━━━━━━━━━━━

    Reply

Leave a Reply to Mia Cancel reply