if the first term of the Ap is 1 and common difference is 4 ,then which term of the Ap is 77 About the author Lyla
Given:- First term of the A.P is 1 and common difference is 4. To Find:– 77 is which term of the given A.P. Formula Used:– [tex]{\boxed{\bf{a_n=a+(n-1)d}}}[/tex] Solution:– Using, [tex]\bf a_n=a+(n-1)d[/tex] Here, [tex]\bf a_n = 77[/tex] a = 1 d = 4 Putting Values, [tex]\sf :\implies\:77=1+(n-1)4[/tex] [tex]\sf :\implies\:77=1+4n-4[/tex] [tex]\sf :\implies\:77=4n-3[/tex] [tex]\sf :\implies\:4n=77+3[/tex] [tex]\sf :\implies\:n=\dfrac{80}{4}[/tex] [tex]\bf :\implies\:n=20[/tex] Hence, 77 is the 20th term of the given A.P. ━━━━━━━━━━━━━━━━━━ More Formulas related to A.P:– [tex]\bf S_n=\dfrac{n}{2}[2a+(n-1)d][/tex] [tex]\bf S_n=\dfrac{n}{2}[a+a_n][/tex] [tex]\bf S_n=\dfrac{n}{2}[a+l][/tex] ━━━━━━━━━━━━━━━━━━ Reply
Answer : 20th term of the A.P. is 77. Given : First term (a) = 1. Common difference (d) = 4. To Find : Which term of the A.P. is 77. Solution : We have, • a = 1 • d = 4 • aₙ = 77 • n = ? We have to find the n. We know that, ★ aₙ = a + (n – 1)d Now, substitute all the given values in the formula. => 77 = 1 + (n – 1)(4) => 77 = 1 + 4n – 4 => 77 = 4n – 3 => 77 + 3 = 4n => 80 = 4n => 80/4 = n => 20 = n => n = 20 Hence, 20th term of the A.P. is 77. Verification : Now we have, • a = 1 • d = 4 • aₙ = 77 • n = 20 Substitute all the values in the formula. Formula : aₙ = a + (n – 1)d => 77 = 1 + (20 – 1)(4) => 77 = 1 + (19)(4) => 77 = 1 + 76 => 77 = 77 L.H.S. = R.H.S. Hence Verified. Reply
Given:-
To Find:–
Formula Used:–
Solution:–
Using, [tex]\bf a_n=a+(n-1)d[/tex]
Here,
Putting Values,
[tex]\sf :\implies\:77=1+(n-1)4[/tex]
[tex]\sf :\implies\:77=1+4n-4[/tex]
[tex]\sf :\implies\:77=4n-3[/tex]
[tex]\sf :\implies\:4n=77+3[/tex]
[tex]\sf :\implies\:n=\dfrac{80}{4}[/tex]
[tex]\bf :\implies\:n=20[/tex]
Hence, 77 is the 20th term of the given A.P.
━━━━━━━━━━━━━━━━━━
More Formulas related to A.P:–
━━━━━━━━━━━━━━━━━━
Answer :
Given :
To Find :
Solution :
We have,
• a = 1
• d = 4
• aₙ = 77
• n = ?
We have to find the n.
We know that,
★ aₙ = a + (n – 1)d
Now, substitute all the given values in the formula.
=> 77 = 1 + (n – 1)(4)
=> 77 = 1 + 4n – 4
=> 77 = 4n – 3
=> 77 + 3 = 4n
=> 80 = 4n
=> 80/4 = n
=> 20 = n
=> n = 20
Hence,
20th term of the A.P. is 77.
Verification :
Now we have,
• a = 1
• d = 4
• aₙ = 77
• n = 20
Substitute all the values in the formula.
Formula : aₙ = a + (n – 1)d
=> 77 = 1 + (20 – 1)(4)
=> 77 = 1 + (19)(4)
=> 77 = 1 + 76
=> 77 = 77
L.H.S. = R.H.S.
Hence Verified.