[tex]\huge{\underline{\underline{\bf Identities\:used}}}[/tex] [tex]\underline\pink{\boxed{\bf (a+b)² = a²+b²+2ab}}[/tex] [tex]\implies \tan( \theta) + \cot( \theta) = 4 \\ \\ \implies( \tan^{2} ( \theta) + \cot^{2} ( \theta) + 2 \tan( \theta) \cot( \theta) ) = 16 \\ \\ \implies\tan^{2} ( \theta) + \cot^{2} ( \theta) = 14 \: – – – (1) \\ \\ \implies\tan^{4} ( \theta) + \cot^{4} ( \theta) \\ \\ \implies (\tan^{2} ( \theta))^{2} + (\cot^{2} ( \theta))^{2} \\ \\\implies (\tan^{2} ( \theta) + \cot^{2} ( \theta)) – 2\tan^{2} ( \theta) \cot^{2} ( \theta) \\ \\ \implies(14) ^{2} – 2 = 194 [/tex] Reply
[tex]\huge{\underline{\underline{\bf Identities\:used}}}[/tex]
[tex]\underline\pink{\boxed{\bf (a+b)² = a²+b²+2ab}}[/tex]
[tex]\implies \tan( \theta) + \cot( \theta) = 4 \\ \\ \implies( \tan^{2} ( \theta) + \cot^{2} ( \theta) + 2 \tan( \theta) \cot( \theta) ) = 16 \\ \\ \implies\tan^{2} ( \theta) + \cot^{2} ( \theta) = 14 \: – – – (1) \\ \\ \implies\tan^{4} ( \theta) + \cot^{4} ( \theta) \\ \\ \implies (\tan^{2} ( \theta))^{2} + (\cot^{2} ( \theta))^{2} \\ \\\implies (\tan^{2} ( \theta) + \cot^{2} ( \theta)) – 2\tan^{2} ( \theta) \cot^{2} ( \theta) \\ \\ \implies(14) ^{2} – 2 = 194 [/tex]