If sin theta + cos theta = m and sec theta + cosec theta = n , prove that n(m² – 1) = 2m.

By Ayla

If sin theta + cos theta = m and sec theta + cosec theta = n , prove that n(m² – 1) = 2m.

About the author
Ayla

2 thoughts on “If sin theta + cos theta = m and sec theta + cosec theta = n , prove that n(m² – 1) = 2m.<br /><br />​”

  1. Given : sin θ + cos θ = m , and sec θ + cosec θ= n .

    Exigency To Prove : n(m² – 1) = 2m . [ L.H.S = R.H.S ]

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    ⠀⠀⠀Given that ,

    ⠀⠀⠀⠀⠀⠀▪︎⠀[tex]\sf \: sin \:\theta \: + \: \: cos \:\theta \: =\: m \:\\[/tex]

    ⠀⠀⠀⠀⠀⠀▪︎⠀[tex]\sf \: sec \:\theta \: + \: \: cosec \:\theta \: =\: n \:\\[/tex]

    ⠀⠀⠀Need To Proove :

    ⠀⠀⠀⠀⠀⠀▪︎⠀[tex]\bf{ \: n \:\bigg( \: m^2\: – \:1 \:\bigg) \: =\: 2m \: } \:\\[/tex]

    ⠀⠀Here ,

    ⠀⠀⠀⠀⠀⠀[tex]\leadsto \: \bf L.H.S \:\:\sf =\: \: n \:\bigg( \: m^2\: – \:1 \:\bigg) \:\\[/tex]

    ⠀⠀⠀⠀⠀⠀[tex]\leadsto \: \bf R.H.S \:\:\sf =\: \: 2m \:\\[/tex]

    [tex]\qquad \bigstar \underline {\boldsymbol {Now \: by \:taking \: the \: \:L.H.S \:\: :}}\\[/tex]

    ⠀⠀⠀⠀⠀⠀[tex]\leadsto \: \bf L.H.S \:\:\sf =\: \: n \:\bigg( \: m^2\: – \:1 \:\bigg) \:\\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf \: \: n \:\bigg( \: m^2\: – \:1 \:\bigg) \:\\[/tex]

    ⠀⠀⠀⠀⠀⠀[tex]\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: given \: Values \::}}\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf \: \: n \:\bigg( \: m^2\: – \:1 \:\bigg) \:\\[/tex]

    ⠀⠀⠀▪︎⠀[tex]\sf \: sin \:\theta \: + \: \: cos \:\theta \: =\: m \:\\[/tex]

    ⠀⠀⠀▪︎⠀[tex]\sf \: sec \:\theta \: + \: \: cosec \:\theta \: =\: n \:\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf \: \: n \:\bigg( \: m^2\: – \:1 \:\bigg) \:\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf \: \bigg(\:sec \:\theta \: + \: \: cosec \:\theta \: \bigg) \: \:\bigg[ \: \bigg(\:sin \:\theta \: + \: \: cos \:\theta \: \bigg)^2\: – \:1 \:\bigg] \:\\\\[/tex]

    [tex]\qquad \because\:\:\bigg\lgroup \sf{ \red{ sec \: \theta \: =\:\dfrac{1}{\:cos \:\theta }}}\bigg\rgroup \\\\[/tex]

    ⠀⠀⠀⠀⠀AND ,

    [tex]\qquad \because\:\:\bigg\lgroup \sf{ \red{ cosec \: \theta \: =\:\dfrac{1}{\:sin \:\theta }}}\bigg\rgroup \\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf \: \bigg(\:sec \:\theta \: + \: \: cosec \:\theta \: \bigg) \: \:\bigg[ \: \bigg(\:sin \:\theta \: + \: \: cos \:\theta \: \bigg)^2\: – \:1 \:\bigg] \:\\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{1}{cos \:\theta } \: + \: \: \dfrac{1}{cos \:\theta} \: \bigg) \: \:\bigg[ \: \bigg(\:sin \:\theta \: + \: \: cos \:\theta \: \bigg)^2\: – \:1 \:\bigg] \:\\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{\: sin \:\theta \: + \: \: cos \:\theta \: }{cos \:\theta\:\sin \:\theta } \: \: \bigg) \: \:\bigg[ \: \bigg(\:sin \:\theta \: + \: \: cos \:\theta \: \bigg)^2\: – \:1 \:\bigg] \:\\\\[/tex]

    [tex]\qquad \because\:\:\bigg\lgroup \sf{ \red{ ( \: a +\:b)^2\:\:=\:a^2 + b^2 + 2ab }}\bigg\rgroup \\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{\: sin \:\theta \: + \: \: cos \:\theta \: }{cos \:\theta\:\sin \:\theta } \: \: \bigg) \: \:\bigg[ \: \:sin^2 \:\theta \: + \: \: cos^2 \:\theta \:+\: 2cos \:\theta\:\sin \:\theta \: – \:1 \:\bigg] \:\\\\[/tex]

    [tex]\qquad \because\:\:\bigg\lgroup \sf{ \red{ sin^2 \: \theta \: +\:\:cos^2 \:\theta\:\:=\:1 }}\bigg\rgroup \\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{\: sin \:\theta \: + \: \: cos \:\theta \: }{cos \:\theta\:\sin \:\theta } \: \: \bigg) \: \:\bigg[ \: \:sin^2 \:\theta \: + \: \: cos^2 \:\theta \:+\: 2cos \:\theta\:\sin \:\theta \: – \:1 \:\bigg] \:\\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{\: sin \:\theta \: + \: \: cos \:\theta \: }{cos \:\theta\:\sin \:\theta } \: \: \bigg) \: \:\bigg[ \: \:1 \:+\: 2cos \:\theta\:\sin \:\theta \: – \:1 \:\bigg] \:\\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{\: sin \:\theta \: + \: \: cos \:\theta \: }{cos \:\theta\:\sin \:\theta } \: \: \bigg) \: \:\bigg[ \: \cancel {\:1 }\:+\: 2cos \:\theta\:\sin \:\theta \:\cancel {- \:1 }\:\bigg] \:\\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{\: sin \:\theta \: + \: \: cos \:\theta \: }{cos \:\theta\:\sin \:\theta } \: \: \bigg) \: \:\bigg[ \: \:\: 2\:cos \:\theta\:\sin \:\theta \: \:\bigg] \:\\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf \: \bigg(\:\dfrac{\: sin \:\theta \: + \: \: cos \:\theta \: }{\cancel{ cos \:\theta\:\sin \:\theta} } \: \: \bigg) \: \:\bigg[ \: \:\: 2\:\cancel {\:\:cos \:\theta\:\sin \:\theta \: } \:\bigg] \:\\\\\qquad \dashrightarrow \:\sf \: \bigg( sin \:\theta \: + \: \: cos \:\theta \: \bigg) \: \:\bigg( \: \:\: 2\: \: \:\bigg) \:\\\\\qquad \dashrightarrow \:\sf \:2 \times \bigg( sin \:\theta \: + \: \: cos \:\theta \: \bigg) \: \: \:\\\\[/tex]

    ⠀⠀⠀▪︎⠀[tex]\sf \: sin \:\theta \: + \: \: cos \:\theta \: =\: m \:\\\\[/tex]

    [tex]\qquad \dashrightarrow \:\sf \:2 \times \bigg( sin \:\theta \: + \: \: cos \:\theta \: \bigg) \: \: \:\\\\\qquad \dashrightarrow \:\sf \:2 \times \bigg( m\: \bigg) \: \: \:\\\\\qquad \dashrightarrow \:\sf \:2 \times m\: \: \:\\\\\qquad \dashrightarrow \:\sf \:2m\: \: \:\\\\\qquad \therefore \:\:\pmb{\underline{\purple{\frak{\:L.H.S \:\:=\:\: 2m \: }}} }\:\:\bigstar \\[/tex]

    ⠀⠀⠀⠀⠀[tex]\leadsto \: \bf L.H.S \:\:\sf =\: \: 2m \:\\[/tex]

    ⠀⠀⠀⠀⠀[tex]\leadsto \: \bf R.H.S \:\:\sf =\: \: 2m \:\\[/tex]

    ⠀⠀As , We can see that here , [ L.H.S = R.H.S ]

    [tex]\therefore {\underline {\bf{ Hence, \:Proved\:}}}\\\\\\[/tex]

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    Reply

Leave a Reply to Luna Cancel reply