.If sin x+a cos x=b, then what is the expression for |a sin x-cos x| in terms of a and b? About the author Anna
Given : sin( x ) + a cos( x ) = b To Find : | a sin( x ) – cos( x ) | = ? Solution : [tex] \dashrightarrow \: \: \tt \sin(x) + a \cos(x) = b \\ \\ [/tex] Differentiate with respect to x [tex] \dashrightarrow \: \: \tt \: \frac{d}{dx} \bigg( \sin(x) + a \cos(x) \bigg) = \frac{d}{dx} (b) \\ \\ [/tex] [tex] \dashrightarrow \: \tt \: \cos(x) – a \sin(x) = 0 \\ \\ [/tex] [tex]{ { \dashrightarrow }}\tt \: \: \bigg(a \sin(x) – \cos(x) \bigg) = 0 \\ \\ [/tex] From this expression we can say, this function is always 0 for all real values of x [tex]\\ \\ \dashrightarrow \: \: { \underline{\boxed{ \mathfrak{ |a \sin(x) – \cos(x) | = 0}}}} \\ \\ [/tex] Reply
Given :
To Find :
Solution :
[tex] \dashrightarrow \: \: \tt \sin(x) + a \cos(x) = b \\ \\ [/tex]
[tex] \dashrightarrow \: \: \tt \: \frac{d}{dx} \bigg( \sin(x) + a \cos(x) \bigg) = \frac{d}{dx} (b) \\ \\ [/tex]
[tex] \dashrightarrow \: \tt \: \cos(x) – a \sin(x) = 0 \\ \\ [/tex]
[tex]{ { \dashrightarrow }}\tt \: \: \bigg(a \sin(x) – \cos(x) \bigg) = 0 \\ \\ [/tex]
[tex]\\ \\ \dashrightarrow \: \: { \underline{\boxed{ \mathfrak{ |a \sin(x) – \cos(x) | = 0}}}} \\ \\ [/tex]