If Sec Ɵ = 5/4, show that (tan theta -cot theta) / (sin theta – cos theta) = 7/12 About the author Elliana
Answer: [tex]35/12[/tex] Step-by-step explanation: It is the correct answer. Hope this attachment helps you. Reply
Given ⇒Secθ = 5/4 show that ⇒(Tanθ – Cotθ)/(Sinθ – Cosθ) = 7/12 Now we know that ⇒Secθ = 5/4 = Hypotenuse(h)/Base(b) We get ⇒Hypotenuse(h) = 5 , Base(b) = 4 and Perpendicular(p) = x using Pythagoras theorem ⇒h² = b² + p² ⇒(5)² = (4)² + p² ⇒25 = 16 + p² ⇒p² = 25 – 16 ⇒p² = 9 ⇒p = 3 We get ⇒Hypotenuse(h) = 5 , Base(b) = 4 and Perpendicular(p) = 3 We know that ⇒Tanθ = p/b = 3/4 ⇒Cotθ = b/p = 4/3 ⇒Sinθ = p/h = 3/5 ⇒Cosθ = b/h = 4/5 Put the value ⇒(Tanθ – Cotθ)/(Sinθ – Cosθ) ⇒(3/4 – 4/3)/(3/5 – 4/5) ⇒{(9 – 16)/12}/(-1/5) ⇒(-7/12)/(-1/5) ⇒7/12×5 ⇒35/12 Reply
Answer:
[tex]35/12[/tex]
Step-by-step explanation:
It is the correct answer.
Hope this attachment helps you.
Given
⇒Secθ = 5/4
show that
⇒(Tanθ – Cotθ)/(Sinθ – Cosθ) = 7/12
Now we know that
⇒Secθ = 5/4 = Hypotenuse(h)/Base(b)
We get
⇒Hypotenuse(h) = 5 , Base(b) = 4 and Perpendicular(p) = x
using Pythagoras theorem
⇒h² = b² + p²
⇒(5)² = (4)² + p²
⇒25 = 16 + p²
⇒p² = 25 – 16
⇒p² = 9
⇒p = 3
We get
⇒Hypotenuse(h) = 5 , Base(b) = 4 and Perpendicular(p) = 3
We know that
⇒Tanθ = p/b = 3/4
⇒Cotθ = b/p = 4/3
⇒Sinθ = p/h = 3/5
⇒Cosθ = b/h = 4/5
Put the value
⇒(Tanθ – Cotθ)/(Sinθ – Cosθ)
⇒(3/4 – 4/3)/(3/5 – 4/5)
⇒{(9 – 16)/12}/(-1/5)
⇒(-7/12)/(-1/5)
⇒7/12×5
⇒35/12