If Sec Ɵ = 5/4, show that (tan theta -cot theta) / (sin theta – cos theta) = 7/12

If Sec Ɵ = 5/4, show that (tan theta -cot theta) / (sin theta – cos theta) = 7/12

About the author
Elliana

2 thoughts on “If Sec Ɵ = 5/4, show that (tan theta -cot theta) / (sin theta – cos theta) = 7/12”

  1. Given

    ⇒Secθ = 5/4

    show that

    ⇒(Tanθ – Cotθ)/(Sinθ – Cosθ) = 7/12

    Now we know that

    ⇒Secθ = 5/4 = Hypotenuse(h)/Base(b)

    We get

    ⇒Hypotenuse(h) = 5 , Base(b) = 4 and Perpendicular(p) = x

    using Pythagoras theorem

    ⇒h² = b² + p²

    ⇒(5)² = (4)² + p²

    ⇒25 = 16 + p²

    ⇒p² = 25 – 16

    ⇒p² = 9

    ⇒p = 3

    We get

    ⇒Hypotenuse(h) = 5 , Base(b) = 4 and Perpendicular(p) = 3

    We know that

    ⇒Tanθ = p/b = 3/4

    ⇒Cotθ = b/p = 4/3

    ⇒Sinθ = p/h = 3/5

    ⇒Cosθ = b/h = 4/5

    Put the value

    ⇒(Tanθ – Cotθ)/(Sinθ – Cosθ)

    ⇒(3/4 – 4/3)/(3/5 – 4/5)

    ⇒{(9 – 16)/12}/(-1/5)

    ⇒(-7/12)/(-1/5)

    ⇒7/12×5

    ⇒35/12

    Reply

Leave a Reply to Margaret Cancel reply