Given Equation [tex] \tt \to \: {x}^{2} + 7x + 5 = 0[/tex] To Find [tex] \tt\to \dfrac{1}{ \alpha ^{2} } + \dfrac{1}{ { \beta }^{2} } [/tex] Now Compare with [tex] \tt \to {ax}^{2} + bx + c = 0[/tex] We Get [tex] \tt \to \: a = 1,b = 7 \: and \: c = 5[/tex] Sum of the root are [tex] \tt \to \: ( \alpha + \beta ) = \dfrac{ – b}{a} [/tex] Product of the root are [tex] \tt \to \: ( \alpha \beta ) = \dfrac{c}{a} [/tex] We get [tex]\tt \to \: ( \alpha + \beta ) = \dfrac{ – 7}{1} = – 7[/tex] [tex] \tt \to \: ( \alpha \beta ) = \dfrac{5}{1} = 5[/tex] Now we Have to find [tex]\tt\to \dfrac{1}{ \alpha ^{2} } + \dfrac{1}{ { \beta }^{2} } [/tex] Taking Lcm [tex] \tt \to \: \dfrac{ { \alpha }^{2} + { \beta }^{2} }{( \alpha \beta ) {}^{2} } [/tex] [tex] \tt \to \: \dfrac{( \alpha + \beta ) {}^{2} – 2 \alpha \beta }{( \alpha \beta ) {}^{2} } [/tex] [tex] \tt \to \: \dfrac{( – 7) {}^{2} – 2 \times 5 }{(5) ^{2} } [/tex] [tex] \tt \to \: \dfrac{49 – 10}{25} = \dfrac{39}{25} [/tex] Answer [tex] \tt \to \: \dfrac{39}{25} [/tex] Reply
Answer: 39/25 Step-by-step explanation: For an equation in form of ax² + bx + c = 0, -b/a and c/a is the sum and product of roots respectively. Therefore, if α and β are roots: ⇒ -(7/1) = α + β and 5/1 = αβ ⇒ – 7 = α + β and 5 = αβ Square on both sides of α+β ⇒ 49 = α² + β² + 2αβ ⇒ 49 – 2(5) = α² + β² [αβ = 5] ⇒ 39 = α² + β² ∴ 1/α² + 1/β² = (β² + α²)/(αβ)² = 39/(5)² = 39/25 Reply
Given Equation
[tex] \tt \to \: {x}^{2} + 7x + 5 = 0[/tex]
To Find
[tex] \tt\to \dfrac{1}{ \alpha ^{2} } + \dfrac{1}{ { \beta }^{2} } [/tex]
Now Compare with
[tex] \tt \to {ax}^{2} + bx + c = 0[/tex]
We Get
[tex] \tt \to \: a = 1,b = 7 \: and \: c = 5[/tex]
Sum of the root are
[tex] \tt \to \: ( \alpha + \beta ) = \dfrac{ – b}{a} [/tex]
Product of the root are
[tex] \tt \to \: ( \alpha \beta ) = \dfrac{c}{a} [/tex]
We get
[tex]\tt \to \: ( \alpha + \beta ) = \dfrac{ – 7}{1} = – 7[/tex]
[tex] \tt \to \: ( \alpha \beta ) = \dfrac{5}{1} = 5[/tex]
Now we Have to find
[tex]\tt\to \dfrac{1}{ \alpha ^{2} } + \dfrac{1}{ { \beta }^{2} } [/tex]
Taking Lcm
[tex] \tt \to \: \dfrac{ { \alpha }^{2} + { \beta }^{2} }{( \alpha \beta ) {}^{2} } [/tex]
[tex] \tt \to \: \dfrac{( \alpha + \beta ) {}^{2} – 2 \alpha \beta }{( \alpha \beta ) {}^{2} } [/tex]
[tex] \tt \to \: \dfrac{( – 7) {}^{2} – 2 \times 5 }{(5) ^{2} } [/tex]
[tex] \tt \to \: \dfrac{49 – 10}{25} = \dfrac{39}{25} [/tex]
Answer
[tex] \tt \to \: \dfrac{39}{25} [/tex]
Answer:
39/25
Step-by-step explanation:
For an equation in form of ax² + bx + c = 0, -b/a and c/a is the sum and product of roots respectively. Therefore, if α and β are roots:
⇒ -(7/1) = α + β and 5/1 = αβ
⇒ – 7 = α + β and 5 = αβ
Square on both sides of α+β
⇒ 49 = α² + β² + 2αβ
⇒ 49 – 2(5) = α² + β² [αβ = 5]
⇒ 39 = α² + β²
∴ 1/α² + 1/β² = (β² + α²)/(αβ)²
= 39/(5)²
= 39/25