[tex]{Solution}[/tex] Given:- p(x) = x³ + 3x² – 2x + 4 To find :- Value of p(2) + p(-2) -p(0) SOLUTION:- First Lets find p(2) that means we have to substitute x = 2 p(2) = x³ + 3x² – 2x + 4 p(2) = (2)³ +3(2)² -2(2) + 4 p(2) = 8 + 3(4) -4 + 4 p(2) = 8 + 12 – 4 + 4 p(2) = 20 Now for finding p(-2) that means we have to substitute x= -2 p(-2) = x³ + 3x² -2x + 4 p(-2) = (-2)³ +3(-2)² -2(-2)+4 p(-2) = -8 + 3(4) +4 +4 p(-2) = -8 + 12 + 8 p(-2) = 12 Now for finding p(0) that means we have to substitute x=0 p(0) = x³ + 3x² -2x + 4 p(0) = (0)³ + 3(0)² -2(0) + 4 p(0) = 0+0 +0 +4 p(0) = 4 Now we need p(2) + p(-2) + p(0) = 20 + 12 + 4 = 36 So, the value of p(2) + p(-2) – p(0) is 36 Reply
[tex]{Solution}[/tex]
Given:-
p(x) = x³ + 3x² – 2x + 4
To find :-
Value of p(2) + p(-2) -p(0)
SOLUTION:-
First Lets find p(2) that means we have to substitute x = 2
p(2) = x³ + 3x² – 2x + 4
p(2) = (2)³ +3(2)² -2(2) + 4
p(2) = 8 + 3(4) -4 + 4
p(2) = 8 + 12 – 4 + 4
p(2) = 20
Now for finding p(-2) that means we have to substitute x= -2
p(-2) = x³ + 3x² -2x + 4
p(-2) = (-2)³ +3(-2)² -2(-2)+4
p(-2) = -8 + 3(4) +4 +4
p(-2) = -8 + 12 + 8
p(-2) = 12
Now for finding p(0) that means we have to substitute x=0
p(0) = x³ + 3x² -2x + 4
p(0) = (0)³ + 3(0)² -2(0) + 4
p(0) = 0+0 +0 +4
p(0) = 4
Now we need p(2) + p(-2) + p(0)
= 20 + 12 + 4
= 36
So, the value of p(2) + p(-2) – p(0) is 36