if log 2 to the base x+ log 8 the base x+ log 64 to the base xequal to 3 then x

if log 2 to the base x+ log 8 the base x+ log 64 to the base xequal to 3 then x

About the author
Aubrey

1 thought on “if log 2 to the base x+ log 8 the base x+ log 64 to the base xequal to 3 then x”

  1. [tex]\large\underline{\sf{Solution-}}[/tex]

    Given that

    [tex]\rm :\longmapsto\: log_{x}(2) + log_{x}(8) + log_{x}(64) = 3 [/tex]

    [tex]\rm \: \: \rm :\longmapsto\:\: \: log_{x}(2 \times 8 \times 64) = 3[/tex]

    [tex] \: \: \: \: \: \red{\bigg \{ \because \: log_{a}(x) + log_{a}(y)=log_{a}(xy)\bigg \}}[/tex]

    [tex]\rm \: \: \rm :\longmapsto\: \: \: log_{x}(2 \times {2}^{3} \times {2}^{6}) = 3[/tex]

    [tex]\rm \: \: \rm :\longmapsto\: \: \: log_{x}( {2}^{1 + 3 + 6} ) = 3[/tex]

    [tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \red{\bigg \{ \because \: {a}^{x} \times {a}^{y} = {a}^{x + y} \bigg \}}[/tex]

    [tex]\rm \: \: \rm :\longmapsto\: \: \: log_{x}( {2}^{10} ) = 3[/tex]

    [tex]\rm :\longmapsto\: {2}^{10} = {x}^{3} [/tex]

    [tex] \: \: \: \: \: \: \: \: \: \: \: \red{\bigg \{ \because \: log_{x}(y) = z \: then \: y = {x}^{z} \bigg \}}[/tex]

    [tex]\rm :\longmapsto\: {x}^{3} = {2}^{9} \times 2[/tex]

    [tex]\bf\implies \:x = {2}^{3} \times {2}^{ \frac{1}{3} } [/tex]

    [tex]\bf\implies \:x = 8 \: \sqrt[3]{2} [/tex]

    Additional Information :-

    [tex]\boxed{ \sf \: log_{x}(x) = 1 }[/tex]

    [tex]\boxed{ \sf \: log_{x}(y) = \dfrac{1}{ log_{y}(x) } }[/tex]

    [tex]\boxed{ \sf \: {a}^{ log_{a}(x) } = x }[/tex]

    [tex]\boxed{ \sf \: {a}^{ ylog_{a}(x) } = {x}^{y} }[/tex]

    [tex]\boxed{ \sf \: log(1) = 0 }[/tex]

    [tex]\boxed{ \sf \: {e}^{ log_{e}(x) } = x}[/tex]

    Reply

Leave a Reply to Melody Cancel reply