Answer: are we have to prove the equation…? Step-by-step explanation: let’s take theta as x, cos⁴x+cos²x=1 cos⁴x=1-cos²x cos⁴x=sin²x cos²x=sin²x/cos²x cos²=tan²x tan²x . sec²x=1 ….(1) again,from, tan²x=cos²x cot²x=sec²x ….(2) so, cot⁴x-cot²x =sec⁴x-sec²x [from eqn. 2] =sec²x(sec²x-1) =sec²x tan²x =1 [from eqn (1)] Reply
Answer:
are we have to prove the equation…?
Step-by-step explanation:
let’s take theta as x,
cos⁴x+cos²x=1
cos⁴x=1-cos²x
cos⁴x=sin²x
cos²x=sin²x/cos²x
cos²=tan²x
tan²x . sec²x=1 ….(1)
again,from,
tan²x=cos²x
cot²x=sec²x ….(2)
so, cot⁴x-cot²x
=sec⁴x-sec²x [from eqn. 2]
=sec²x(sec²x-1)
=sec²x tan²x
=1 [from eqn (1)]