If (ɑ,b) is the mid point of the line segment joining the points ɑ(10,-6) ɑnd B(k, 4) ɑnd ɑ-2b= 18, the vɑlue of k.

If (ɑ,b) is the mid point of the line segment joining the points ɑ(10,-6) ɑnd B(k, 4) ɑnd ɑ-2b= 18, the vɑlue of k.

Do it fɑst✔︎​

About the author
Hailey

2 thoughts on “If (ɑ,b) is the mid point of the line segment joining the points ɑ(10,-6) ɑnd B(k, 4) ɑnd ɑ-2b= 18, the vɑlue of k.<br /><br /><br”

  1. [tex]\mathbb{Question:} [/tex]

    If (ɑ,b) is the mid point of the line segment joining the points ɑ(10,-6) ɑnd B(k, 4) ɑnd ɑ-2b= 18, the vɑlue of k.

    OR

    If (a,b) is the mid-point of the line segment joining the points A(10,−6),B(k,4) and a−2b=18, find the value of k and the distance AB.

    [tex] \\ [/tex]

    [tex]\huge \fbox \pink{Answer:}[/tex]

    (a,b) is the mid-point of Line segment joining the points A(10,−6) and B(k,4)

    So,

    [tex]⇒a = \frac{10 + k}{2} \: \textbf{and \: } b = \frac{ – 6 + 4}{2} = – 1[/tex]

    [tex] \textbf{it is given that,} [/tex]

    [tex]⇒a – 2b = 18[/tex]

    [tex]⇒ \textbf{put} \: b = – 1[/tex]

    [tex]⇒a – 2( – 1 ) = 18[/tex]

    [tex]⇒a = 18 – 2 = 16[/tex]

    Now,

    [tex]⇒a = \frac{10 + k}{2} [/tex]

    [tex]⇒16 = \frac{10 + k}{2} [/tex]

    [tex]⇒k + 10 = 32[/tex]

    [tex]⇒k = 22[/tex]

    More Answer:

    [tex]\text{Distance between the Points} \: (x_{1},y_{1}\text{and} \: (x_{2},y_{2}) \: \text{is}[/tex]

    [tex] = \sqrt{(x_{2} – x_{1} {)}^{2} + (y_{2} – y_{1}} {)}^{2} [/tex]

    [tex]\text{Distance between the Points} \: (10 , – 6) \: \text{and} \: (22,4) \: \text{is}[/tex]

    [tex]⇒ \sqrt{(22 – 10 {)}^{2} + (4 + 6 {)}^{2} } [/tex]

    [tex] = \sqrt{244} [/tex]

    [tex] = 2 \sqrt{61} [/tex]

    [tex] \\ \\ \\ [/tex]

    btw aapka dil se sukriya thanks dene ke liya

    [tex] \\ \\ \\ \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}[/tex]

    Reply
  2. Answer:

    (a,b) is the mid-point of Line segment joining the points A(10,−6) and B(k,4)

    So,

    a=

    2

    10+k

    and b=

    2

    −6+4

    =−1

    It is given that,

    a−2b=18

    Put b=−1

    a−2(−1)=18

    a=18−2=16

    Now,

    a=

    2

    10+k

    16=

    2

    10+k

    k+10=32

    k=22

    Distance between the points (x

    1

    ,y

    1

    ) and (x

    2

    ,y

    2

    ) is

    (x

    2

    −x

    1

    )

    2

    +(y

    2

    −y

    1

    )

    2

    Distance between the points (10,−6) and (22,4) is

    (22−10)

    2

    +(4+6)

    2

    =

    244

    =2

    61

    Step-by-step explanation:

    Hope it’s helpful…

    pls mark me brainliest…

    Reply

Leave a Reply to Ayla Cancel reply