If alpha and beta are the zeros of polynomial 3 x^2-5x-9 find value of 2/ Alpha + 2/ beta.. Please solve this question fast, don’t post any irrelevant answer.. Class 10 maths About the author Raelynn
Answer: [tex] \frac{ – 10}{9} [/tex] Step-by-step explanation: By cross multiplying, we get [tex] \frac{2}{ \alpha } + \frac{2}{ \beta } = \frac{2( \alpha + \beta) }{ \alpha \beta } [/tex] Now, alpha and beta are zeros of quadratic x^2-5x-9 so using the property for sum of roots and product of roots of a quadratic polynomial, we get [tex] \alpha + \beta = \frac{ – ( – 5)}{1} = 5[/tex] [tex] \alpha \beta = \frac{ – 9}{1} = – 9[/tex] So, [tex] \frac{2}{ \alpha } + \frac{2}{ \beta } = \frac{2( \alpha + \beta) }{ \alpha \beta } = \frac{2 \times 5}{ – 9} = \frac{ – 10}{9} [/tex] So answer is (-10/9) Reply
Answer:
[tex] \frac{ – 10}{9} [/tex]
Step-by-step explanation:
By cross multiplying, we get
[tex] \frac{2}{ \alpha } + \frac{2}{ \beta } = \frac{2( \alpha + \beta) }{ \alpha \beta } [/tex]
Now, alpha and beta are zeros of quadratic x^2-5x-9
so using the property for sum of roots and product of roots of a quadratic polynomial, we get
[tex] \alpha + \beta = \frac{ – ( – 5)}{1} = 5[/tex]
[tex] \alpha \beta = \frac{ – 9}{1} = – 9[/tex]
So,
[tex] \frac{2}{ \alpha } + \frac{2}{ \beta } = \frac{2( \alpha + \beta) }{ \alpha \beta } = \frac{2 \times 5}{ – 9} = \frac{ – 10}{9} [/tex]
So answer is (-10/9)