if alfa and bita are zeros of polynomial p(x)=kx^2+4x+4,such alfa^2+bita^2=24,find value of k About the author Parker
Answer : [tex]{ \boldsymbol{k}} \: = \: (- 1 ), \: \bigg(\dfrac{2}{3} \bigg) [/tex] Explanation : Given polynomial, [tex]p(x) = kx^{2} + 4x + 4[/tex] Where, [tex] { \alpha }^{2} + { \beta }^{2} = 24[/tex] Find the value of [tex]\boldsymbol{k}[/tex] On comparing the polynomial with [tex]ax^2 + bx + c[/tex] We have, a = k b = 4 c = 4 Here, [tex] \bull \: \alpha + \beta = \dfrac{ – b}{a} = \dfrac{ – 4}{k} [/tex] [tex] \bull \: \alpha \beta = \dfrac{c}{a} = \dfrac{4}{k} [/tex] Using identity, [tex] {( \alpha + \beta )}^{2} = { \alpha }^{2} + { \beta }^{2} + 2 { \alpha \beta }[/tex] On substituting the values, [tex] \implies \: \bigg( \dfrac{ – 4}{k} \bigg)^{2} = 24 + 2 \bigg( \dfrac{4}{k} \bigg) \\[/tex] [tex]\implies \: \dfrac{16}{ {k}^{2} } = 24 + \dfrac{8}{k} \\[/tex] [tex]\implies \: \: 16 = 24 {k}^{2} + 8k \\[/tex] [tex]\implies \: 0 = {24k}^{2} + 8k – 16 \\[/tex] [tex]\implies \: 0 = {3k}^{2} + k – 2 \\[/tex] [tex]\implies \: 0 = {3k}^{2} + 3 k – 2k – 2 \\[/tex] [tex]\implies \: 0 = 3k(k + 1) – 2(k + 1) \\[/tex] [tex]\implies \: 0 = (k + 1)(3k – 2) \\[/tex] [tex]{ \underline{\therefore {\sf{The \: value \: of \: { \boldsymbol{k}} \: is \: (- 1 ), \: \bigg(\dfrac{ 2}{3} \bigg) }}}}[/tex] Reply
Answer :
[tex]{ \boldsymbol{k}} \: = \: (- 1 ), \: \bigg(\dfrac{2}{3} \bigg) [/tex]
Explanation :
Given polynomial,
[tex]p(x) = kx^{2} + 4x + 4[/tex]
Where,
[tex] { \alpha }^{2} + { \beta }^{2} = 24[/tex]
Find the value of [tex]\boldsymbol{k}[/tex]
On comparing the polynomial with [tex]ax^2 + bx + c[/tex]
We have,
Here,
[tex] \bull \: \alpha + \beta = \dfrac{ – b}{a} = \dfrac{ – 4}{k} [/tex]
[tex] \bull \: \alpha \beta = \dfrac{c}{a} = \dfrac{4}{k} [/tex]
Using identity,
[tex] {( \alpha + \beta )}^{2} = { \alpha }^{2} + { \beta }^{2} + 2 { \alpha \beta }[/tex]
On substituting the values,
[tex] \implies \: \bigg( \dfrac{ – 4}{k} \bigg)^{2} = 24 + 2 \bigg( \dfrac{4}{k} \bigg) \\[/tex]
[tex]\implies \: \dfrac{16}{ {k}^{2} } = 24 + \dfrac{8}{k} \\[/tex]
[tex]\implies \: \: 16 = 24 {k}^{2} + 8k \\[/tex]
[tex]\implies \: 0 = {24k}^{2} + 8k – 16 \\[/tex]
[tex]\implies \: 0 = {3k}^{2} + k – 2 \\[/tex]
[tex]\implies \: 0 = {3k}^{2} + 3 k – 2k – 2 \\[/tex]
[tex]\implies \: 0 = 3k(k + 1) – 2(k + 1) \\[/tex]
[tex]\implies \: 0 = (k + 1)(3k – 2) \\[/tex]
[tex]{ \underline{\therefore {\sf{The \: value \: of \: { \boldsymbol{k}} \: is \: (- 1 ), \: \bigg(\dfrac{ 2}{3} \bigg) }}}}[/tex]