Answer: 3 Step-by-step explanation: ⇒ a² – 3a + 1 = 0 ⇒ a² + 1 = 3a Divide both sides by a: ⇒ (a² + 1)/a = 3a ⇒ (a²/a) + (1/a) = 3a/a ⇒ a + (1/a) = 3 Hence, the value of a + 1/a is 3 Method 2: if you’re familiar with roots. Let the roots be x and y. Product of roots = xy = 1 ⇒ y = 1/x Sum of roots = x + y = – (-3) = 3 Thus, ⇒ x + y = 3 ⇒ x + 1/x = 3 Replacing x with a(as x represents a): ⇒ a + 1/a = 3 required value Reply
a²-3a+1 = 0 αnd α is not equal to 0 a²+ 1 = 3a a² + 1 / a = 3 a a²/a + 1 / a = 3 a/a a + 1 / a = 3 So, a+1/a = 3 a+1/a = 3 ________________________________ hope it helps Reply
Answer:
3
Step-by-step explanation:
⇒ a² – 3a + 1 = 0
⇒ a² + 1 = 3a
Divide both sides by a:
⇒ (a² + 1)/a = 3a
⇒ (a²/a) + (1/a) = 3a/a
⇒ a + (1/a) = 3
Hence, the value of a + 1/a is 3
Method 2: if you’re familiar with roots. Let the roots be x and y.
Product of roots = xy = 1 ⇒ y = 1/x
Sum of roots = x + y = – (-3) = 3
Thus,
⇒ x + y = 3 ⇒ x + 1/x = 3
Replacing x with a(as x represents a):
⇒ a + 1/a = 3 required value
a²-3a+1 = 0 αnd α is not equal to 0
So, a+1/a = 3
a+1/a = 3
________________________________
hope it helps