If a radius of a circle reduced by 50%, its area will be reduced by ​

If a radius of a circle reduced by 50%, its area will be reduced by ​

2 thoughts on “If a radius of a circle reduced by 50%, its area will be reduced by ​”

1. $$\\$$

Area goes with the square of radius, so if we multiply the radius by . 5 we multiply the area by . 52=. 25, a reduction of 75%.

hope it helps uh :)

2. $${\huge{\bf{\orange{Solution-:}}}}$$

$$\blue\implies$$ $$\sf75$$%

$${\huge{\bf{\orange{Explanation-:}}}}$$

$${\bf{\green{Let~Original~Radius=R}}}$$

$${\bf{\blue{New~Radius-:}}}$$

$$\sf\frac\green{50}\green{100}$$$$\small\sf\green{R}$$ = $$\sf\frac\green{R}\green{2}$$

$${\bf{\blue{Original~area-:}}}$$

$$\sf\green{πR^2}$$

$${\bf{\green{New~area}}}$$ = $$\sf\green{π}$$($$\sf\frac\green{R}\green{2}$$)$$\green{^2}$$ = $$\sf\frac\green{πR^2}\green{4}$$

$${\bf{\blue{Decrease~in~area-:}}}$$

($$\sf\frac\green{3πR^2}\green{4}$$ × $$\sf\frac\green{1}\green{πR^2}$$ × $$\small\sf\green{100}$$)%

$$\blue\implies$$ $$\sf\green{75}$$%

ʀ ʟʀ ɪɴ ʜɴ:)