Answer: x2+2x+2=0 Here, a=1,b=2,,c=2 From quadratic formula, x=2×1−2±22−4×2×1 ⇒x=2−2±2i=−1±i Therefore, α=−1+i⇒α2=(−1+i)2=−2i β=−1−i⇒β2=(−1−i)2=2i Now, α15+β15 =(α2)7⋅α+(β2)7⋅β =(−2i)7(−1+i)+(2i)7(−1−i) =(−2)7(−i)(−1+i)+27(−i)(−1−i) Reply
Answer:
x2+2x+2=0
Here, a=1,b=2,,c=2
From quadratic formula,
x=2×1−2±22−4×2×1
⇒x=2−2±2i=−1±i
Therefore,
α=−1+i⇒α2=(−1+i)2=−2i
β=−1−i⇒β2=(−1−i)2=2i
Now,
α15+β15
=(α2)7⋅α+(β2)7⋅β
=(−2i)7(−1+i)+(2i)7(−1−i)
=(−2)7(−i)(−1+i)+27(−i)(−1−i)
Answer:
come here rge-vajs-pjz
Step-by-step explanation: