If a = 3 and b = -2, then find the value of a^a + b^b. Please answer with steps. About the author Liliana
Answer: 109/4 Step-by-step explanation: To calculate a^a + b^b first place the values of a and b ATP, [tex]a^{a\\}[/tex] + [tex]b^{b}[/tex] = [tex]3^{3}[/tex] + [tex](-2)^{-2}[/tex] = 27 + [tex]\frac{1}{(-2)^2}[/tex] ([tex]a^{-m}[/tex] = [tex]\frac{1}{a^m}[/tex]) = 27 + [tex]\frac{1}{2^2}[/tex] (Since [tex](-2)^{2}[/tex] = [tex]2^{2}[/tex]) = 27 + [tex]\frac{1}{4}[/tex] = 109/4 Reply
Step-by-step explanation: a^a +b^b = 3³+(-2)^-2 = 27+ 1/(-2)² =27+1/4 take LCM =(108+1)/4 = 109/4 Reply
Answer:
109/4
Step-by-step explanation:
To calculate a^a + b^b first place the values of a and b
ATP,
[tex]a^{a\\}[/tex] + [tex]b^{b}[/tex]
= [tex]3^{3}[/tex] + [tex](-2)^{-2}[/tex]
= 27 + [tex]\frac{1}{(-2)^2}[/tex] ([tex]a^{-m}[/tex] = [tex]\frac{1}{a^m}[/tex])
= 27 + [tex]\frac{1}{2^2}[/tex] (Since [tex](-2)^{2}[/tex] = [tex]2^{2}[/tex])
= 27 + [tex]\frac{1}{4}[/tex]
= 109/4
Step-by-step explanation:
a^a +b^b = 3³+(-2)^-2
= 27+ 1/(-2)²
=27+1/4
take LCM
=(108+1)/4 = 109/4