Given : If x – a is a factor of x³ – 3x²a + 2a²x + b . Let f (x) = x³ – 3x²a + 2a²x + b Since, x – a is a factor of f(x) then, f (a) = 0 ⇒ a³ – 3a²a + 2a²a + b = 0 ⇒ a³ – 3a³ + 2a³ + b = 0 ⇒ – 2a³ + 2a³ + b = 0 ⇒ b = 0 Hence, the value of b is 0. Among the given options option (A) 0 is correct. Reply
Given : If x – a is a factor of x³ – 3x²a + 2a²x + b .
Let f (x) = x³ – 3x²a + 2a²x + b
Since, x – a is a factor of f(x) then, f (a) = 0
⇒ a³ – 3a²a + 2a²a + b = 0
⇒ a³ – 3a³ + 2a³ + b = 0
⇒ – 2a³ + 2a³ + b = 0
⇒ b = 0
Hence, the value of b is 0.
Among the given options option (A) 0 is correct.