If 10 men can build a wall in 5 days then in how many days 5 men can build he same wall
2 thoughts on “If 10 men can build a wall in 5 days then in how many days 5 men can build he same wall”
Leave a Comment
You must be logged in to post a comment.
Given :
To Find:
Solution:
Now,
Table :
[tex]\begin{gathered}\begin{gathered}\begin{gathered} \tiny\boxed{\begin{array}{ c |c} \frak{ \pmb{men}}& \rm{ \pmb{days}}\\ \dfrac{\qquad\qquad}{ \sf 10}&\dfrac{\qquad\qquad}{ \sf 5 \: days}& \\ \dfrac{\qquad\qquad}{ \sf 5}& \dfrac{\qquad\qquad}{ \sf x \: days} \end{array}}\end{gathered}& \\ \end{gathered}\end{gathered}[/tex]
Here,
When,
[tex] \longrightarrow \tt \: 10 : 5 \propto 5 : x \\ \\ \\ \longrightarrow \tt \: 50 = 5x \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \longrightarrow \tt \: x = \cancel \frac{50}{5} \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \longrightarrow \tt { \boxed{ \frak{x = 10 \: days}}}[/tex]
Method 2
We know,
So,
[tex] \longrightarrow \tt \: 10 \times 5 \: days \\ \\ \\ \longrightarrow \: { \pink{ \boxed{ \tt{ 50 days}}}}\: \: \: \:[/tex]
Now,
[tex] \longrightarrow \tt \: 50 \div 5 \: days \\ \\ \\ \longrightarrow { \blue{ \boxed{ \tt{10days}} \star}} \: \: \: [/tex]
Hence:
More to know:
[tex]{ \orange{ \star{ \boxed{ \tt \: {products \: of \: means \: = products \: of \: extremes}}}}}[/tex]
Here,
Correct Question :-
If 10 men can build a wall in 5 days. Then in how many days 5 men can build the same wal?
Given:
To find:
Solution:
• Let’s consider days Required for 5 men to build the same wall be x.
10,5,5 & x are given to us.
What to do?
We need to find x.
Step-by-step explanation :-
Here, 10 men can build a wall in 5 days. We have to find out x(how many days 5 men can build the same wall).
→ 10 : 5 = x : 5
→ 10/5 = x/5
→ 5x = 5 × 10
→ 5x = 50
→ x = 50/5
→ x = 10
∴ Hence, 5 men can build the same wall in 10 days.