Hola Brainlians. Here’s a question to check your Trigonometric skill. ICSE Board : Inverse Trigonometry, Class 10. Give answer fa

Hola Brainlians. Here’s a question to check your Trigonometric skill. ICSE Board : Inverse Trigonometry, Class 10. Give answer fast and no spam.

Proof the given identity.

tan^{-1}x – tan^{-1} y = tan^{-1} [(x – y)/(1 + xy)] , xy > – 1

Spammers stay away. No spam. Give best answer. Mods and stars answer.​

About the author
Brielle

2 thoughts on “Hola Brainlians. Here’s a question to check your Trigonometric skill. ICSE Board : Inverse Trigonometry, Class 10. Give answer fa”

  1. Answer:

    → Let α=tan

    −1

    x,β=tan

    −1

    y

    As tan(α+β)=

    1−tanαtanβ

    tanα+tanβ

    ⇒tan(α+β)=

    1−xy

    x+y

    ⇒α+β=tan

    −1

    (

    1−xy

    x+y

    )= tan

    −1

    x+tan

    −1

    y

    Reply
  2. Solution!!

    To prove:-

    [tex]\sf \tan ^{-1}x-\tan ^{-1}y=\tan ^{-1}\left(\dfrac{x-y}{1+xy}\right)[/tex]

    First of all, we will

    Let [tex]\sf \tan ^{-1}x\:be\:\alpha[/tex]

    And

    Let [tex]\sf \tan ^{-1}y\:be\:\beta[/tex]

    We will get the values of x and y.

    x = [tex]\sf \tan \alpha[/tex]

    y = [tex]\sf \tan \beta[/tex]

    Now let’s subtract!!

    [tex]\sf \tan (\alpha -\beta )=\dfrac{\tan \alpha -\tan \beta }{1+\tan \alpha \tan \beta }[/tex]

    [tex]\sf \alpha -\beta =\tan ^{-1}\left(\dfrac{x-y}{1+xy}\right)[/tex]

    [tex]\sf \tan ^{-1}x -\tan ^{-1}y=\tan ^{-1}\left(\dfrac{x-y}{1+xy}\right)[/tex]

    Hence, proved!

    Reply

Leave a Reply to Madelyn Cancel reply