guys please help me in solving this question sin theta[1+tan theta] + cos theta [1+ cot theta]=sec theta + cosec theta​ please giv

guys please help me in solving this question sin theta[1+tan theta] + cos theta [1+ cot theta]=sec theta + cosec theta​ please give answer only​

About the author
Parker

2 thoughts on “guys please help me in solving this question sin theta[1+tan theta] + cos theta [1+ cot theta]=sec theta + cosec theta​ please giv”

  1. [tex]\large\underline{\bold{Given \:Question – }}[/tex]

    [tex] \bf \: Prove \: that \: \sf \: sin\theta \:(1 + tan\theta \:) + cos\theta \:(1 + cot\theta \:) = sec\theta \: + cosec\theta \:[/tex]

    [tex]\begin{gathered}\Large{\bold{{\underline{Formula \: Used – }}}} \end{gathered}[/tex]

    [tex] \boxed{ \bf{ \: tan\theta \: = \dfrac{sin\theta \:}{cos\theta \:} }}[/tex]

    [tex] \boxed{ \bf{ \: cot\theta \: = \dfrac{cos\theta \:}{sin\theta \:} }}[/tex]

    [tex] \boxed{ \bf{ \: \dfrac{1}{cos\theta \:} = sec\theta \:}}[/tex]

    [tex] \boxed{ \bf{ \: \dfrac{1}{sin\theta \:} = cosec\theta \:}}[/tex]

    [tex] \boxed{ \bf{ \: {sin}^{2} \theta \: + {cos}^{2} \theta \: = 1}}[/tex]

    [tex]\large\underline{\sf{Solution-}}[/tex]

    Consider,

    [tex]\rm :\longmapsto\:\: sin\theta \:(1 + tan\theta \:) + cos\theta \:(1 + cot\theta \:)[/tex]

    [tex] \rm \: = \: \: sin\theta \: \bigg(1 + \dfrac{sin\theta \:}{cos\theta \:} \: \bigg) + cos\theta \: \bigg(1 + \dfrac{cos\theta \:}{sin\theta \:} \: \bigg)[/tex]

    [tex] \rm \: = \: \: sin\theta \: \bigg( \dfrac{cos\theta \: + sin\theta \:}{cos\theta \:} \: \bigg) + cos\theta \: \bigg(\dfrac{sin\theta \: + cos\theta \:}{sin\theta \:} \: \bigg)[/tex]

    [tex] \rm \: = \: (sin\theta \: + cos\theta \:)\bigg(\dfrac{sin\theta \:}{cos\theta \:} + \dfrac{cos\theta \:}{sin\theta \:} \bigg) [/tex]

    [tex] \rm \: = \: (sin\theta \: + cos\theta \:)\bigg( \dfrac{ {sin}^{2}\theta \: + {cos}^{2}\theta \: }{sin\theta \:cos\theta \:} \bigg) [/tex]

    [tex] \rm \: = \: (sin\theta \: + cos\theta \:) \times \dfrac{1}{sin\theta \:cos\theta \:} [/tex]

    [tex] \rm \: = \: \dfrac{ \cancel{sin\theta \:}}{ \cancel{sin\theta } \: \: cos\theta \:} + \dfrac{ \cancel{cos\theta \:}}{sin\theta \: \cancel{cos\theta \:}} [/tex]

    [tex] \rm \: = \: \dfrac{1}{cos\theta \:} + \dfrac{1}{sin\theta \:} [/tex]

    [tex] \rm \: = \: sec\theta \: + cosec\theta \:[/tex]

    [tex]{\boxed{\boxed{\bf{Hence, Proved}}}}[/tex]

    Additional Information:-

    Relationship between sides and T ratios

    sin θ = Opposite Side/Hypotenuse

    cos θ = Adjacent Side/Hypotenuse

    tan θ = Opposite Side/Adjacent Side

    sec θ = Hypotenuse/Adjacent Side

    cosec θ = Hypotenuse/Opposite Side

    cot θ = Adjacent Side/Opposite Side

    Reciprocal Identities

    cosec θ = 1/sin θ

    sec θ = 1/cos θ

    cot θ = 1/tan θ

    sin θ = 1/cosec θ

    cos θ = 1/sec θ

    tan θ = 1/cot θ

    Co-function Identities

    sin (90°−x) = cos x

    cos (90°−x) = sin x

    tan (90°−x) = cot x

    cot (90°−x) = tan x

    sec (90°−x) = cosec x

    cosec (90°−x) = sec x

    Fundamental Trigonometric Identities

    sin²θ + cos²θ = 1

    sec²θ – tan²θ = 1

    cosec²θ – cot²θ = 1

    Reply

Leave a Comment