Given X + Y = [tex]\left[\begin{array}{ccc}1&2\\1&1\\\end{array}\right][/tex] and X – Y = [tex]\left[\begin{array}{ccc}3&a

Given X + Y = [tex]\left[\begin{array}{ccc}1&2\\1&1\\\end{array}\right][/tex] and X – Y = [tex]\left[\begin{array}{ccc}3&0\\-1&1\\\end{array}\right][/tex]. Find X and Y ?

About the author
Peyton

2 thoughts on “Given X + Y = [tex]\left[\begin{array}{ccc}1&2\\1&1\\\end{array}\right][/tex] and X – Y = [tex]\left[\begin{array}{ccc}3&a”

  1. Answer:-

    Given:-

    \begin{gathered} \sf \: X + Y= \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} \: \: \: – \: equation \: (1)\end{gathered}

    X+Y=[

    1

    1

    2

    1

    ]−equation(1)

    And,

    \begin{gathered} \sf \: X – Y = \begin{bmatrix} \sf \: 3& \sf \: 0 \\ \sf \: – 1& \sf \: 1 \end{bmatrix} \: \: – \: \: equation \: (2)\end{gathered}

    X−Y=[

    3

    −1

    0

    1

    ]−equation(2)

    Add equations (1) & (2)

    \begin{gathered} \implies \sf \: X + Y + X – Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} + \begin{bmatrix} \sf \: 3& \sf \: 0 \\ \sf \: – 1& \sf \: 1 \end{bmatrix} \\ \\ \\ \implies \sf \:2X = \begin{bmatrix} \sf \: 1 + 3& \sf \: 2 + 0\\ \sf \: 1 – 1& \sf \: 1 + 1 \end{bmatrix} \\ \\ \\ \implies \sf \:2X = \begin{bmatrix} \sf \: 4& \sf \: 2 \\ \sf \: 0& \sf \: 2\end{bmatrix} \\ \\ \\ \implies \sf \: X = \begin{bmatrix} \sf \: \frac{4}{2} & \sf \: \frac{2}{2} \\ \\ \sf \: \frac{0}{2} & \sf \: \frac{2}{2} \end{bmatrix} \\ \\ \\ \sf \implies \red{X = \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix}}\end{gathered}

    ⟹X+Y+X−Y=[

    1

    1

    2

    1

    ]+[

    3

    −1

    0

    1

    ]

    ⟹2X=[

    1+3

    1−1

    2+0

    1+1

    ]

    ⟹2X=[

    4

    0

    2

    2

    ]

    ⟹X=

    2

    4

    2

    0

    2

    2

    2

    2

    ⟹X=[

    2

    0

    1

    1

    ]

    Substitute the value of X in equation (1).

    \begin{gathered} \implies \sf \: \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix} + Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} \\ \\ \\ \implies \sf \:Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} – \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix} \\ \\ \\ \implies \sf \:Y =\begin{bmatrix} \sf \: 1 – 2& \sf \: 2 – 1 \\ \sf \: 1 – 0& \sf \: 1 – 1 \end{bmatrix} \\ \\ \\ \implies \sf \red{ \:Y =\begin{bmatrix} \sf \: – 1 & \sf \: 1 \\ \sf \: 1 & \sf \: 0 \end{bmatrix}}\end{gathered}

    ⟹[

    2

    0

    1

    1

    ]+Y=[

    1

    1

    2

    1

    ]

    ⟹Y=[

    1

    1

    2

    1

    ]−[

    2

    0

    1

    1

    ]

    ⟹Y=[

    1−2

    1−0

    2−1

    1−1

    ]

    ⟹Y=[

    −1

    1

    1

    0

    ]

    Reply
  2. Answer:

    Given:-

    [tex] \sf \: X + Y= \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} \: \: \: – \: equation \: (1)[/tex]

    And,

    [tex] \sf \: X – Y = \begin{bmatrix} \sf \: 3& \sf \: 0 \\ \sf \: – 1& \sf \: 1 \end{bmatrix} \: \: – \: \: equation \: (2)[/tex]

    Add equations (1) & (2)

    [tex] \implies \sf \: X + Y + X – Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} + \begin{bmatrix} \sf \: 3& \sf \: 0 \\ \sf \: – 1& \sf \: 1 \end{bmatrix} \\ \\ \\ \implies \sf \:2X = \begin{bmatrix} \sf \: 1 + 3& \sf \: 2 + 0\\ \sf \: 1 – 1& \sf \: 1 + 1 \end{bmatrix} \\ \\ \\ \implies \sf \:2X = \begin{bmatrix} \sf \: 4& \sf \: 2 \\ \sf \: 0& \sf \: 2\end{bmatrix} \\ \\ \\ \implies \sf \: X = \begin{bmatrix} \sf \: \frac{4}{2} & \sf \: \frac{2}{2} \\ \\ \sf \: \frac{0}{2} & \sf \: \frac{2}{2} \end{bmatrix} \\ \\ \\ \sf \implies \red{X = \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix}}[/tex]

    Substitute the value of X in equation (1).

    [tex] \implies \sf \: \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix} + Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} \\ \\ \\ \implies \sf \:Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} – \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix} \\ \\ \\ \implies \sf \:Y =\begin{bmatrix} \sf \: 1 – 2& \sf \: 2 – 1 \\ \sf \: 1 – 0& \sf \: 1 – 1 \end{bmatrix} \\ \\ \\ \implies \sf \red{ \:Y =\begin{bmatrix} \sf \: – 1 & \sf \: 1 \\ \sf \: 1 & \sf \: 0 \end{bmatrix}}[/tex]

    Reply

Leave a Reply to Adalyn Cancel reply