Given tan A =4/3. find the trigonometric ratios of the angle A. ​

Given tan A =4/3. find the trigonometric ratios of the angle A. ​

About the author
Maria

2 thoughts on “Given tan A =4/3. find the trigonometric ratios of the angle A. ​”

  1. Answer:

    [tex] \tan(a) = \frac{p}{b} \\ p = 4 \:, \: b \: = 3 \\ {h}^{2} = {p}^{2} + {b}^{2} \\ {h}^{2} = {4}^{2} + {3}^{2} \\h = \sqrt{25} \\ h = 5 \\ \sin(a) = \frac{p}{h} = \frac{4}{5} \\ \csc(a) = \frac{5}{4} \\ \cos(a) = \frac{b}{h} = \frac{3}{5} \\ \sec(a) = \frac{5}{3} \\ \cot(a) = \frac{3}{4} [/tex]

    Reply
  2. Topic:-

    Trigonometry

    Question:-

    [tex]Given\: tan\theta=4/3. find\:the\:trigonometric\: ratios\: of \:the\: angle\: \theta [/tex]

    Solution:-

    [tex]Given tan \theta=4/3 [/tex]

    [tex] We\: know\: that \:tan\theta =\dfrac{Opposite\:side}{Adjacent\:side} [/tex]

    [tex] Here, \:Opposite\:side= 4 \: and Adjacent\:side=3 [/tex]

    [tex] We \:need \:Hypotenuse\:side \: here [/tex]

    [tex] We\: know\: that\:Pythageorous\:theorem[/tex]

    [tex] Hypotenuse²=Opposite\:side²+Adjacent\:side²[/tex]

    [tex] Hypotenuse²= 4²+3² [/tex]

    [tex] Hypotenuse²= 16+9 [/tex]

    [tex] Hypotenuse²= 25 [/tex]

    [tex] Hypotenuse=\sqrt{25} [/tex]

    [tex] Hypotenuse= 5[/tex]

    [tex] Now\:we\:got\:all\:sides [/tex]

    [tex] Sin\theta =\dfrac{Opposite\:side}{Hypotenuse\:side}[/tex]

    So, [tex] Sin\theta=\dfrac{4}{5} [/tex]

    [tex] cos\theta=\dfrac{Adjacent\:side}{Hypotenuse\:side}[/tex]

    [tex] cos\theta=\dfrac{ 3}{5} [/tex]

    [tex] cot\theta=\dfrac{Adjacent\:side}{Opposite\:side} [/tex]

    [tex] cot\theta=\dfrac{3}{4}[/tex]

    [tex] csc\theta=\dfrac{Hypotenuse\:side}{Opposite\:side}[/tex]

    [tex] csc\theta=\dfrac{5}{4} [/tex]

    [tex] sec\theta= \dfrac{Hypotenuse}{Adjacent} [/tex]

    [tex] sec\theta= \dfrac{ 5}{3} [/tex]

    More Information:-

    Trigon metric Identities

    sin²θ + cos²θ = 1

    sec²θ – tan²θ = 1

    csc²θ – cot²θ = 1

    Trigometric relations

    sinθ = 1/cscθ

    cosθ = 1 /secθ

    tanθ = 1/cotθ

    tanθ = sinθ/cosθ

    cotθ = cosθ/sinθ

    Trigonmetric ratios

    sinθ = opp/hyp

    cosθ = adj/hyp

    tanθ = opp/adj

    cotθ = adj/opp

    cscθ = hyp/opp

    secθ = hyp/adj

    Reply

Leave a Comment