Answer: [tex] \tan(a) = \frac{p}{b} \\ p = 4 \:, \: b \: = 3 \\ {h}^{2} = {p}^{2} + {b}^{2} \\ {h}^{2} = {4}^{2} + {3}^{2} \\h = \sqrt{25} \\ h = 5 \\ \sin(a) = \frac{p}{h} = \frac{4}{5} \\ \csc(a) = \frac{5}{4} \\ \cos(a) = \frac{b}{h} = \frac{3}{5} \\ \sec(a) = \frac{5}{3} \\ \cot(a) = \frac{3}{4} [/tex] Reply
Topic:- Trigonometry Question:- [tex]Given\: tan\theta=4/3. find\:the\:trigonometric\: ratios\: of \:the\: angle\: \theta [/tex] Solution:- [tex]Given tan \theta=4/3 [/tex] [tex] We\: know\: that \:tan\theta =\dfrac{Opposite\:side}{Adjacent\:side} [/tex] [tex] Here, \:Opposite\:side= 4 \: and Adjacent\:side=3 [/tex] [tex] We \:need \:Hypotenuse\:side \: here [/tex] [tex] We\: know\: that\:Pythageorous\:theorem[/tex] [tex] Hypotenuse²=Opposite\:side²+Adjacent\:side²[/tex] [tex] Hypotenuse²= 4²+3² [/tex] [tex] Hypotenuse²= 16+9 [/tex] [tex] Hypotenuse²= 25 [/tex] [tex] Hypotenuse=\sqrt{25} [/tex] [tex] Hypotenuse= 5[/tex] [tex] Now\:we\:got\:all\:sides [/tex] [tex] Sin\theta =\dfrac{Opposite\:side}{Hypotenuse\:side}[/tex] So, [tex] Sin\theta=\dfrac{4}{5} [/tex] [tex] cos\theta=\dfrac{Adjacent\:side}{Hypotenuse\:side}[/tex] [tex] cos\theta=\dfrac{ 3}{5} [/tex] [tex] cot\theta=\dfrac{Adjacent\:side}{Opposite\:side} [/tex] [tex] cot\theta=\dfrac{3}{4}[/tex] [tex] csc\theta=\dfrac{Hypotenuse\:side}{Opposite\:side}[/tex] [tex] csc\theta=\dfrac{5}{4} [/tex] [tex] sec\theta= \dfrac{Hypotenuse}{Adjacent} [/tex] [tex] sec\theta= \dfrac{ 5}{3} [/tex] More Information:- Trigon metric Identities sin²θ + cos²θ = 1 sec²θ – tan²θ = 1 csc²θ – cot²θ = 1 Trigometric relations sinθ = 1/cscθ cosθ = 1 /secθ tanθ = 1/cotθ tanθ = sinθ/cosθ cotθ = cosθ/sinθ Trigonmetric ratios sinθ = opp/hyp cosθ = adj/hyp tanθ = opp/adj cotθ = adj/opp cscθ = hyp/opp secθ = hyp/adj Reply
Answer:
[tex] \tan(a) = \frac{p}{b} \\ p = 4 \:, \: b \: = 3 \\ {h}^{2} = {p}^{2} + {b}^{2} \\ {h}^{2} = {4}^{2} + {3}^{2} \\h = \sqrt{25} \\ h = 5 \\ \sin(a) = \frac{p}{h} = \frac{4}{5} \\ \csc(a) = \frac{5}{4} \\ \cos(a) = \frac{b}{h} = \frac{3}{5} \\ \sec(a) = \frac{5}{3} \\ \cot(a) = \frac{3}{4} [/tex]
Topic:-
Trigonometry
Question:-
[tex]Given\: tan\theta=4/3. find\:the\:trigonometric\: ratios\: of \:the\: angle\: \theta [/tex]
Solution:-
[tex]Given tan \theta=4/3 [/tex]
[tex] We\: know\: that \:tan\theta =\dfrac{Opposite\:side}{Adjacent\:side} [/tex]
[tex] Here, \:Opposite\:side= 4 \: and Adjacent\:side=3 [/tex]
[tex] We \:need \:Hypotenuse\:side \: here [/tex]
[tex] We\: know\: that\:Pythageorous\:theorem[/tex]
[tex] Hypotenuse²=Opposite\:side²+Adjacent\:side²[/tex]
[tex] Hypotenuse²= 4²+3² [/tex]
[tex] Hypotenuse²= 16+9 [/tex]
[tex] Hypotenuse²= 25 [/tex]
[tex] Hypotenuse=\sqrt{25} [/tex]
[tex] Hypotenuse= 5[/tex]
[tex] Now\:we\:got\:all\:sides [/tex]
[tex] Sin\theta =\dfrac{Opposite\:side}{Hypotenuse\:side}[/tex]
So, [tex] Sin\theta=\dfrac{4}{5} [/tex]
[tex] cos\theta=\dfrac{Adjacent\:side}{Hypotenuse\:side}[/tex]
[tex] cos\theta=\dfrac{ 3}{5} [/tex]
[tex] cot\theta=\dfrac{Adjacent\:side}{Opposite\:side} [/tex]
[tex] cot\theta=\dfrac{3}{4}[/tex]
[tex] csc\theta=\dfrac{Hypotenuse\:side}{Opposite\:side}[/tex]
[tex] csc\theta=\dfrac{5}{4} [/tex]
[tex] sec\theta= \dfrac{Hypotenuse}{Adjacent} [/tex]
[tex] sec\theta= \dfrac{ 5}{3} [/tex]
More Information:-
Trigon metric Identities
sin²θ + cos²θ = 1
sec²θ – tan²θ = 1
csc²θ – cot²θ = 1
Trigometric relations
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
Trigonmetric ratios
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj