For What value of ‘x’ Which Satisfies this equation,[tex](x – a) \div(x-b) = (x + a) \div (x+b)[/tex] About the author Emery
Step-by-step explanation: (x-a)/(x-b) = (x+a)/(x+b) (x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b) (x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)x^2-ax+bx-ab = x^2 +ax-bx-ab (x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)x^2-ax+bx-ab = x^2 +ax-bx-ab-ax+bx-ax+bx=0 (x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)x^2-ax+bx-ab = x^2 +ax-bx-ab-ax+bx-ax+bx=0-2ax+2bx=0 (x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)x^2-ax+bx-ab = x^2 +ax-bx-ab-ax+bx-ax+bx=0-2ax+2bx=0-2x(a-b)=0 (x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)x^2-ax+bx-ab = x^2 +ax-bx-ab-ax+bx-ax+bx=0-2ax+2bx=0-2x(a-b)=0x=0 Reply
Step-by-step explanation:
(x-a)/(x-b) = (x+a)/(x+b)
(x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)
(x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)x^2-ax+bx-ab = x^2 +ax-bx-ab
(x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)x^2-ax+bx-ab = x^2 +ax-bx-ab-ax+bx-ax+bx=0
(x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)x^2-ax+bx-ab = x^2 +ax-bx-ab-ax+bx-ax+bx=0-2ax+2bx=0
(x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)x^2-ax+bx-ab = x^2 +ax-bx-ab-ax+bx-ax+bx=0-2ax+2bx=0-2x(a-b)=0
(x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)x^2-ax+bx-ab = x^2 +ax-bx-ab-ax+bx-ax+bx=0-2ax+2bx=0-2x(a-b)=0x=0