For What value of ‘x’ Which Satisfies this equation,
[tex](x – a) \div(x-b) = (x + a) \div (x+b)[/tex]

For What value of ‘x’ Which Satisfies this equation,
[tex](x – a) \div(x-b) = (x + a) \div (x+b)[/tex]

About the author
Emery

1 thought on “For What value of ‘x’ Which Satisfies this equation,<br />[tex](x – a) \div(x-b) = (x + a) \div (x+b)[/tex]<br />​”

  1. Step-by-step explanation:

    (x-a)/(x-b) = (x+a)/(x+b)

    (x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)

    (x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)x^2-ax+bx-ab = x^2 +ax-bx-ab

    (x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)x^2-ax+bx-ab = x^2 +ax-bx-ab-ax+bx-ax+bx=0

    (x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)x^2-ax+bx-ab = x^2 +ax-bx-ab-ax+bx-ax+bx=0-2ax+2bx=0

    (x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)x^2-ax+bx-ab = x^2 +ax-bx-ab-ax+bx-ax+bx=0-2ax+2bx=0-2x(a-b)=0

    (x-a)/(x-b) = (x+a)/(x+b)(x-a)(x-b)=(x+a)(x-b)x^2-ax+bx-ab = x^2 +ax-bx-ab-ax+bx-ax+bx=0-2ax+2bx=0-2x(a-b)=0x=0

    Reply

Leave a Reply to Raelynn Cancel reply