find the zeroes of the quadratic polynomial and verify the relationship between the zeroes and coefficient p(x)= x2 -2x -8pls answer fast About the author Kennedy
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀☆ GIVEN POLYNOMIAL : x² – 2x – 8 [tex]\qquad \dashrightarrow \sf x^2 – 2x – 8 \: = 0\\\\[/tex] [tex]\qquad \dashrightarrow \sf x^2 – 4x + 2x – 8 \: = 0\\\\[/tex] [tex]\qquad \dashrightarrow \sf x( x – 4) + 2 ( x – 4 )\: = 0\\\\[/tex] [tex]\qquad \dashrightarrow \sf ( x + 2 ) ( x – 4 )\: = 0\\\\[/tex] [tex]\qquad \dashrightarrow \sf x \: = \:- 2 \:\:or \: 4\\\\[/tex] [tex]\qquad \dashrightarrow \underline{\pmb{\purple{\: x \:\:=\:\: -2\:\:or\:\: 4 \:\:}} }\:\:\bigstar \\\\ [/tex] ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \sf \: Hence, \:\:The \:zeroes \:of\:Polynomial \:are\:\bf \:\: -2\:\:\sf and\:\bf\: 4 \: }}\\\\ [/tex] ⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ [tex]\qquad \bigstar \qquad \underline {\sf Relationship\: between \:zeroes \:of\ polynomial\:and \:the \:Cofficients\:}: \\[/tex]⠀⠀⠀ [tex]\qquad\maltese\:\:\textsf{Sum of Zeroes :} \\\\\dashrightarrow\sf\:\:\alpha +\beta= \dfrac{ – \:( \:Cofficient \:of\:x\:)\: \: \: }{ \: \: \: Cofficient \:of\:x^2 \:\: \: \:}\\\\\\\dashrightarrow\sf \bigg(-2\bigg) + \bigg( 4\bigg) = \dfrac{-(-2)}{1}\\\\\\\dashrightarrow\sf \bigg(-2\bigg) + \bigg( 4\bigg) = 2 \\\\\\\dashrightarrow{\underline{\boxed{\frak{ 2 = 2 }}}} \\\\[/tex] ⠀⠀⠀ [tex]\qquad\maltese\:\:\textsf{Product of Zeroes :}\\\\\dashrightarrow\sf\:\:\alpha\beta=\dfrac{Constant\:Term}{Cofficient\:of\:x^2 \:}\\\\\\\dashrightarrow\sf \bigg(-2\bigg) \times \bigg( 4 \bigg) = \dfrac{-8 \: \: }{ \: \: 1 \: \: } \\\\\\\dashrightarrow{\underline{\boxed{\frak{- 8 = -8 }}}}\\[/tex] ⠀⠀⠀ [tex]\qquad\quad\therefore{\underline{\pmb{\textbf{Hence, Verified!}}}}[/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ Reply
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀☆ GIVEN POLYNOMIAL : x² – 2x – 8
[tex]\qquad \dashrightarrow \sf x^2 – 2x – 8 \: = 0\\\\[/tex]
[tex]\qquad \dashrightarrow \sf x^2 – 4x + 2x – 8 \: = 0\\\\[/tex]
[tex]\qquad \dashrightarrow \sf x( x – 4) + 2 ( x – 4 )\: = 0\\\\[/tex]
[tex]\qquad \dashrightarrow \sf ( x + 2 ) ( x – 4 )\: = 0\\\\[/tex]
[tex]\qquad \dashrightarrow \sf x \: = \:- 2 \:\:or \: 4\\\\[/tex]
[tex]\qquad \dashrightarrow \underline{\pmb{\purple{\: x \:\:=\:\: -2\:\:or\:\: 4 \:\:}} }\:\:\bigstar \\\\ [/tex]
⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \sf \: Hence, \:\:The \:zeroes \:of\:Polynomial \:are\:\bf \:\: -2\:\:\sf and\:\bf\: 4 \: }}\\\\ [/tex]
⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
[tex]\qquad \bigstar \qquad \underline {\sf Relationship\: between \:zeroes \:of\ polynomial\:and \:the \:Cofficients\:}: \\[/tex]⠀⠀⠀
[tex]\qquad\maltese\:\:\textsf{Sum of Zeroes :} \\\\\dashrightarrow\sf\:\:\alpha +\beta= \dfrac{ – \:( \:Cofficient \:of\:x\:)\: \: \: }{ \: \: \: Cofficient \:of\:x^2 \:\: \: \:}\\\\\\\dashrightarrow\sf \bigg(-2\bigg) + \bigg( 4\bigg) = \dfrac{-(-2)}{1}\\\\\\\dashrightarrow\sf \bigg(-2\bigg) + \bigg( 4\bigg) = 2 \\\\\\\dashrightarrow{\underline{\boxed{\frak{ 2 = 2 }}}} \\\\[/tex]
⠀⠀⠀
[tex]\qquad\maltese\:\:\textsf{Product of Zeroes :}\\\\\dashrightarrow\sf\:\:\alpha\beta=\dfrac{Constant\:Term}{Cofficient\:of\:x^2 \:}\\\\\\\dashrightarrow\sf \bigg(-2\bigg) \times \bigg( 4 \bigg) = \dfrac{-8 \: \: }{ \: \: 1 \: \: } \\\\\\\dashrightarrow{\underline{\boxed{\frak{- 8 = -8 }}}}\\[/tex]
⠀⠀⠀
[tex]\qquad\quad\therefore{\underline{\pmb{\textbf{Hence, Verified!}}}}[/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀