Find the zeroes of the polynomial p(x) = x2 – 2√ x + 2 and verify the relationship between the zeroes and the coefficients About the author Mia
Answer: [tex] {x}^{2} – 2 \sqrt{2x} = 0 \: ⇒ { \purple{a{x}^{2} +bx+c⇒}}[/tex] [tex]a=1 \: b= – 2 \sqrt{2} [/tex] [tex]x(x−2 \sqrt{2}) = 0 [/tex] [tex]{{ \purple{x=0,2 \sqrt{2}}}}[/tex] [tex] { \boxed{ \huge{ \red{∴∝ = 0, \beta = 2 \sqrt{2}}}}}[/tex] [tex]{ \purple{∝+β= \frac{ – b}{a}}} [/tex] [tex]∝+β= \frac{ – ( – 2 \sqrt{2}) }{1}[/tex] [tex] { \huge{ \boxed{ \red{∝+β= 2 \sqrt{2} }}}}[/tex] [tex]{ \purple{∝×β= \frac{c}{a} }}[/tex] [tex]∝×β= \frac{0}{1}[/tex] [tex]{ \huge{ \boxed{ \red{∝×β= 0}}}}[/tex] [tex]0 + 2 \sqrt{2} = 2 \sqrt{2} [/tex] [tex]( – 2 \sqrt{2} \times 0) = 0[/tex] [tex]{ \huge{ \boxed{ \red{L.H.S=R.H.S }}}} [/tex] Step-by-step explanation: Hope this helps you ✌️ Reply
Answer:
[tex] {x}^{2} – 2 \sqrt{2x} = 0 \: ⇒ { \purple{a{x}^{2} +bx+c⇒}}[/tex]
[tex]a=1 \: b= – 2 \sqrt{2} [/tex]
[tex]x(x−2 \sqrt{2}) = 0 [/tex]
[tex]{{ \purple{x=0,2 \sqrt{2}}}}[/tex]
[tex] { \boxed{ \huge{ \red{∴∝ = 0, \beta = 2 \sqrt{2}}}}}[/tex]
[tex]{ \purple{∝+β= \frac{ – b}{a}}} [/tex]
[tex]∝+β= \frac{ – ( – 2 \sqrt{2}) }{1}[/tex]
[tex] { \huge{ \boxed{ \red{∝+β= 2 \sqrt{2} }}}}[/tex]
[tex]{ \purple{∝×β= \frac{c}{a} }}[/tex]
[tex]∝×β= \frac{0}{1}[/tex]
[tex]{ \huge{ \boxed{ \red{∝×β= 0}}}}[/tex]
[tex]0 + 2 \sqrt{2} = 2 \sqrt{2} [/tex]
[tex]( – 2 \sqrt{2} \times 0) = 0[/tex]
[tex]{ \huge{ \boxed{ \red{L.H.S=R.H.S }}}} [/tex]
Step-by-step explanation:
Hope this helps you ✌️