Find the zeroes of the polynomial p(x) = x2

– 2√ x + 2 and verify the relationship

between the zeroes and t

By Mia

Find the zeroes of the polynomial p(x) = x2

– 2√ x + 2 and verify the relationship

between the zeroes and the coefficients​

About the author
Mia

1 thought on “Find the zeroes of the polynomial p(x) = x2<br /><br />– 2√ x + 2 and verify the relationship <br /><br />between the zeroes and t”

  1. Answer:

    [tex] {x}^{2} – 2 \sqrt{2x} = 0 \: ⇒ { \purple{a{x}^{2} +bx+c⇒}}[/tex]

    [tex]a=1 \: b= – 2 \sqrt{2} [/tex]

    [tex]x(x−2 \sqrt{2}) = 0 [/tex]

    [tex]{{ \purple{x=0,2 \sqrt{2}}}}[/tex]

    [tex] { \boxed{ \huge{ \red{∴∝ = 0, \beta = 2 \sqrt{2}}}}}[/tex]

    [tex]{ \purple{∝+β= \frac{ – b}{a}}} [/tex]

    [tex]∝+β= \frac{ – ( – 2 \sqrt{2}) }{1}[/tex]

    [tex] { \huge{ \boxed{ \red{∝+β= 2 \sqrt{2} }}}}[/tex]

    [tex]{ \purple{∝×β= \frac{c}{a} }}[/tex]

    [tex]∝×β= \frac{0}{1}[/tex]

    [tex]{ \huge{ \boxed{ \red{∝×β= 0}}}}[/tex]

    [tex]0 + 2 \sqrt{2} = 2 \sqrt{2} [/tex]

    [tex]( – 2 \sqrt{2} \times 0) = 0[/tex]

    [tex]{ \huge{ \boxed{ \red{L.H.S=R.H.S }}}} [/tex]

    Step-by-step explanation:

    Hope this helps you ✌️

    Reply

Leave a Comment