Find the value of a and bif
2- root 5/
2+root 5
= a+b root5
find a and b​

Find the value of a and bif
2- root 5/
2+root 5
= a+b root5
find a and b​

About the author
Adeline

1 thought on “<br />Find the value of a and bif<br />2- root 5/<br />2+root 5<br />= a+b root5<br />find a and b​”

  1. Step-by-step explanation:

    The value of a is 0 and b is 2.

    Given:

    \sf{\dfrac{7+3\sqrt5}{2+\sqrt5}-\dfrac{7-3\sqrt5}{2-\sqrt5}=a+b\sqrt5}

    2+

    5

    7+3

    5

    2−

    5

    7−3

    5

    =a+b

    5

    To find:

    \sf{The \ value \ of \ a \ and \ b.}The value of a and b.

    Solution:

    \sf{\leadsto{a+b\sqrt5=\dfrac{7+3\sqrt5}{2+\sqrt5}-\dfrac{7-3\sqrt5}{2-\sqrt5}}}⇝a+b

    5

    =

    2+

    5

    7+3

    5

    2−

    5

    7−3

    5

    \sf{\therefore{a+b\sqrt5=\dfrac{(7+3\sqrt5)(2-\sqrt5)}{(2+\sqrt5)(2-\sqrt5)}-\dfrac{(7-3\sqrt5)(2+\sqrt5)}{(2-\sqrt5)(2+\sqrt5)}}}∴a+b

    5

    =

    (2+

    5

    )(2−

    5

    )

    (7+3

    5

    )(2−

    5

    )

    (2−

    5

    )(2+

    5

    )

    (7−3

    5

    )(2+

    5

    )

    \sf{\therefore{a+b\sqrt5=\dfrac{14-7\sqrt5+6\sqrt5-15}{2^{2}-\sqrt5^{2}}-\dfrac{14+7\sqrt5-6\sqrt5-15}{2^{2}-\sqrt5^{2}}}}∴a+b

    5

    =

    2

    2

    5

    2

    14−7

    5

    +6

    5

    −15

    2

    2

    5

    2

    14+7

    5

    −6

    5

    −15

    \sf{\therefore{a+b\sqrt5=\dfrac{-1-\sqrt5}{-1}-\dfrac{-1+\sqrt5}{-1}}}∴a+b

    5

    =

    −1

    −1−

    5

    −1

    −1+

    5

    \sf{\therefore{a+b\sqrt5=1+\sqrt5-(1-\sqrt5)}}∴a+b

    5

    =1+

    5

    −(1−

    5

    )

    \sf{\therefore{a+b\sqrt5=1+\sqrt5-1+\sqrt5}}∴a+b

    5

    =1+

    5

    −1+

    5

    \sf{\therefore{a+b\sqrt5=0+2\sqrt5}}∴a+b

    5

    =0+2

    5

    \sf{On \ comparing \ we \ get,}On comparing we get,

    \sf{a=0 \ and \ b\sqrt5=2\sqrt5}a=0 and b

    5

    =2

    5

    \sf{\therefore{a=0 \ and \ b=2}}∴a=0 and b=2

    \sf\purple{\tt{\therefore{The \ value \ of \ a \ is \ 0 \ and \ b \ is \ 2.}}}∴The value of a is 0 and b is 2.

    Reply

Leave a Reply to Parker Cancel reply