find the sum of first 20terms of the arithmetic progression 3,8,13…. using the formula​

find the sum of first 20terms of the arithmetic progression 3,8,13…. using the formula​

About the author
Alice

1 thought on “find the sum of first 20terms of the arithmetic progression 3,8,13…. using the formula​”

  1. Given:-

    • An A.P = 3, 8, 13, . . . .

    To Find:-

    • Sum of first 20 terms of an A.P.

    Formula Used:-

    • [tex]{\boxed{\bf{S_n = \dfrac{n}{2}[2a+(n-1)d]}}}[/tex]

    Here,

    • [tex]\bf S_n [/tex] = Sum of n terms
    • a = First term of the A.P
    • d = Common Difference
    • n = No. of terms in an A.P

    Solution:-

    Using Formula,

    [tex]\bf :\implies\:S_n = \dfrac{n}{2}[2a+(n-1)d][/tex]

    Here,

    • a = 3
    • d = 8 – 3 = 5
    • n = 20

    Putting values,

    [tex]\sf :\implies\:S_{20} = \dfrac{20}{2}[2\times3+(20-1)5][/tex]

    [tex]\sf :\implies\:S_{20} = 10[6+19\times5][/tex]

    [tex]\sf :\implies\:S_{20} = 10[6+95][/tex]

    [tex]\sf :\implies\:S_{20} = 10\times101[/tex]

    [tex]\bf :\implies\:S_{20} = 1,010[/tex]

    Hence, The Sum of first 20 terms on given A.P is 1,010.

    ━━━━━━━━━━━━━━━━━━━━━━━━━

    Reply

Leave a Reply to Emma Cancel reply