find the roots of the following question
[tex]5x^{2}-29x+20[/tex]

find the roots of the following question
[tex]5x^{2}-29x+20[/tex]

About the author
Serenity

2 thoughts on “find the roots of the following question<br /> [tex]5x^{2}-29x+20[/tex]”

  1. Step-by-step explanation:

    {5x}^{2} – 29x + 205x

    2

    −29x+20

    Factorise The Term By Middle Term Splitting.

    In Middle Term Splitting Divide Middle Term Such that On Multiplying Both It should be Product of Coffecient x² and constant Term

    \begin{gathered} {5x}^{2} – 29x + 20 = 0 \\ \\ {5x}^{2} – 25x – 4x + 20 = 0 \\ \\ 5x(x – 5) – 4(x – 5) = 0 \\ \\ (5x – 4)(x – 5) = 0\end{gathered}

    5x

    2

    −29x+20=0

    5x

    2

    −25x−4x+20=0

    5x(x−5)−4(x−5)=0

    (5x−4)(x−5)=0

    Here One Zero of Polynomial

    \begin{gathered}5x – 4 = 0 \\ \\ 5x = 4 \\ \\ x = \frac{4}{5} \end{gathered}

    5x−4=0

    5x=4

    x=

    5

    4

    Other Zero of Polynomial

    \begin{gathered}x – 5 = 0 \\ \\ x = 5\end{gathered}

    x−5=0

    x=5

    We got Zeroes

    \begin{gathered} \alpha = \frac{4}{5} \\ \\ \beta = 5\end{gathered}

    α=

    5

    4

    β=5

    Polynomial

    ax²+bx+c

    {5x}^{2} – 29x + 205x

    2

    −29x+20

    Coffecient of x²=5

    Coffecient of x¹=-29

    Coffecient of x^0=20

    Let a in ax²+bx+c=5

    Let B in ax²+bx+c=-29

    Let c in ax²+bx+c=20

    Sum Of Zeroes

    \begin{gathered} \alpha + \beta = – \frac{coffecient \: of \: x}{coffecient \: of \: {x}^{2} } \\ \\ \alpha + \beta = – \frac{b}{a} \\ \\ \frac{4}{5} + 5 = – \frac{-29}{5} \\ \\ \frac{29}{4} = + \frac{29}{4} < /p > < p > \end{gathered}

    α+β=−

    coffecientofx

    2

    coffecientofx

    α+β=−

    a

    b

    5

    4

    +5=−

    5

    −29

    4

    29

    =+

    4

    29

    </p><p>

    lhs = rhslhs=rhs

    Product of Zeroes

    \begin{gathered} \alpha \times \beta = \frac{constant \: term}{cofficient \: of \: {x}^{2} } \\ \\ \frac{4}{5} \times 5 = \frac{20}{5} \\ \\ \frac{20}{5} = \frac{20}{5} \\ \\ lhs = rhs\end{gathered}

    α×β=

    cofficientofx

    2

    constantterm

    5

    4

    ×5=

    5

    20

    5

    20

    =

    5

    20

    lhs=rhs

    \boxed{\mathbf{\huge{LHS=RHS}}}

    LHS=RHS

    \underline{\mathbf{\huge{Verified✓}}}

    Verified✓

    Reply
  2. Answer:

    5 and 4/5

    Step-by-step explanation:

    5x² – 29x + 20

    =》 5x² -25x -4x + 20

    =》 5x(x – 5) -4(x – 5)

    =》 (5x – 4) (x – 5)

    =》 x=4/5 and x = 5

    Reply

Leave a Reply to Alice Cancel reply