Find the remainder (without division) on dividing f(x) by (x + 3) where :

① f(x) = 2x² – 7x – 1
② f(x) = 3x³ – 7x²

By Ayla

Find the remainder (without division) on dividing f(x) by (x + 3) where :

① f(x) = 2x² – 7x – 1
② f(x) = 3x³ – 7x² + 11x + 1
____________________​

About the author
Ayla

2 thoughts on “Find the remainder (without division) on dividing f(x) by (x + 3) where :<br /><br />① f(x) = 2x² – 7x – 1<br />② f(x) = 3x³ – 7x²”

  1. [tex]\huge\mathbb\fcolorbox{purple}{lavenderblush}{✰Answer}[/tex]

    ✧══════•❁❀❁•══════✧

    ✠ Since x + 3 = x – ( -3 ), by cor. 1 to remainder theorem :

    ━━━━━━━━━━━━━━━━━━

    ① f(x) = 2x² – 7x – 1

    ☆ Remainder ➤ f(-3)

    ➤ 2. (-3)² – 7. (-3) – 1

    ➤ 2.9 + 21 – 1

    ➤ 18 + 21 – 1

    ➤ 38

    Hence, the remainder is 38.

    ━━━━━━━━━━━━━━━━━━

    ② f(x) = 3x³ – 7x² + 11x + 1

    ☆ Remainder ➤ f(-3)

    ➤ 3. (-3)³ – 7. (-3)² + 11. (-3) + 1

    ➤ 3.(-27) – 7.9 – 33 + 1

    ➤ – 81 – 63 – 33 + 1

    ➤ -176

    Hence, the remainder is -176.

    ✧══════•❁❀❁•══════✧

    [tex]\: \: \: \: \: \: \: \: \: \: \: \: \: \boxed {\boxed{ { \blue{ \bf{ {I \:Hope \: It \: Helps \: You}}}}}}[/tex]

    [tex] \bf \underline{ \purple{Regards:}}[/tex]

    [tex] \bf\: \: \: \: \: \: \: \underline{ \underline \pink{ ItzBlìnkìngstar}}[/tex]

    Reply
  2. Since x + 3 = x ( 3 ), by cor. 1 to remainder theorem :

    ━━━━━━━━━━━━━━━━━━

    ① f(x) = 2x² – 7x – 1

    Remainder ➤ f(-3)

    ➤ 2. (-3)² – 7. (-3) – 1

    ➤ 2.9 + 21 – 1

    ➤ 18 + 21 – 1

    ➤ 38

    • Hence, the remainder is 38.

    ━━━━━━━━━━━━━━━━━━

    ② f(x) = 3x³ – 7x² + 11x + 1

    ☆ Remainder ➤ f(-3)

    ➤ 3. (-3)³ – 7. (-3)² + 11. (-3) + 1

    ➤ 3.(-27) – 7.9 – 33 + 1

    ➤ – 81 – 63 – 33 + 1

    ➤ -176

    • Hence, the remainder is 176.

    ━━━━━━━━━━━━━━━━━━

    Reply

Leave a Reply to Raelynn Cancel reply