Answer: 27/8 Step-by-step explanation: (x³+3x²+3x+1 ) ÷ (x-1/2) x-1/2=0 x=1/2 by putting x=1/2 in x³+3x²+3x+1 (1/2)³ + [3(1/2)²] + 3(1/2) + 1 = (1/8) + (3/4)+ (3/2) +1 = {1+(3×2) + (3×4) + (1×1)} / 8 (by l.c.m) = [1+6+12+1]/8 = 27/8 Reply
Given:– •x^3 + 3x^2 + 3x + 1 is divided by x -1/2. To Find:– •Find the remainder. Solution:– Firstly we have to solve this [tex] \: \: \sf \: x – \frac{1}{2} = 0 \\ \\ \: \: \sf \: x = \frac{1}{2} [/tex] Hence, the value of x is 1/2. Now we will find the remainder of x^3 + 3x^2 +3x+1. Now put the values [tex] \: \: \sf \: {x}^{3} + 3 {x}^{2} + 3x + 1 = 0 \\ \\ \: \: \sf \: {( \frac{1}{2}) }^{3} + 3 \times {( \frac{1}{2}) }^{2} + 3 \times \frac{1}{2} + 1 \\ \\ \: \: \sf \: \frac{1}{8} + \frac{3}{4} + \frac{3}{2} + 1 \\ \\ \: \: \sf \: \frac{1 + 6 + 12}{8} + 1 \\ \\ \: \: \sf \: \frac{19}{8} + 1\\ \\ \: \: \sf \: \frac{19 + 8}{8} \\ \\ \: \: \sf \: \frac{27}{8} [/tex] Henceforth,value of x^3 + 3x^2 +3x+1 is 27/8. ___________________________________ Reply
Answer:
27/8
Step-by-step explanation:
(x³+3x²+3x+1 ) ÷ (x-1/2)
x-1/2=0
x=1/2
by putting x=1/2 in x³+3x²+3x+1
(1/2)³ + [3(1/2)²] + 3(1/2) + 1
= (1/8) + (3/4)+ (3/2) +1
= {1+(3×2) + (3×4) + (1×1)} / 8 (by l.c.m)
= [1+6+12+1]/8
= 27/8
Given:–
•x^3 + 3x^2 + 3x + 1 is divided by x -1/2.
To Find:–
•Find the remainder.
Solution:–
Firstly we have to solve this
[tex] \: \: \sf \: x – \frac{1}{2} = 0 \\ \\ \: \: \sf \: x = \frac{1}{2} [/tex]
Hence, the value of x is 1/2.
Now we will find the remainder of x^3 + 3x^2 +3x+1.
Now put the values
[tex] \: \: \sf \: {x}^{3} + 3 {x}^{2} + 3x + 1 = 0 \\ \\ \: \: \sf \: {( \frac{1}{2}) }^{3} + 3 \times {( \frac{1}{2}) }^{2} + 3 \times \frac{1}{2} + 1 \\ \\ \: \: \sf \: \frac{1}{8} + \frac{3}{4} + \frac{3}{2} + 1 \\ \\ \: \: \sf \: \frac{1 + 6 + 12}{8} + 1 \\ \\ \: \: \sf \: \frac{19}{8} + 1\\ \\ \: \: \sf \: \frac{19 + 8}{8} \\ \\ \: \: \sf \: \frac{27}{8} [/tex]
Henceforth,value of x^3 + 3x^2 +3x+1 is 27/8.
___________________________________